Design of spatially-varying orthotropic infill structures using multiscale topology optimization and explicit de-homogenization

Authors: Jaewook Lee^{a,*}, Chiyoung Kwon^a, Jeonghoon Yoo^b, Seungjae Min^c,

Tsuyoshi Nomura^d, and Ercan M. Dede^e

- ^a Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
- ^b Yonsei University, Seoul, South Korea
- ^c Hanyang University, Seoul, South Korea
- ^d Toyota Central R & D Labs, Aichi, Japan
- ^e Toyota Research Institute of North American, Ann Arbor, MI, USA
- * Presenting author

TOP Webinar 11 Apr. 29, 2021.

Part I Introduction

Background

Coated orthotropic infill (shell porous-infill) structures

- ✓ Biomimetic structure Exists in nature such as animal bones, and plant stems
- Advantages of shell porous-infill structure: Superior energy absorption, high strength-weight ratio, Robustness to load variation and material deficiency
- ✓ Uninform infill versus Graded (spatially-varying thickness and orientation) infill

Human femur bone*

Uniform infill^{*,**,***}

Graded infill****,*****

* Y. Luo, Q. Li, and S. Liu, Topology optimization of shell-infill structures using an erosion-based interface identification method, CMAME, 2019
 ** A. Clausen, E. Andreassen, O. Sigmund, Topology optimization of 3D shell structures with porous infill, Acta Mech Sin, 2017
 *** V. Hoang, P. Tran, N. Nguyeb, K. Hackl, H. Nguyen-Xuan, Adaptive concurrent topology optimization of coated structures..., CAD, 2020

**** S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructural infill, SMO, 2020

***** J.P. Groen, J. Wu, O. Sigmund, Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill, CMAME, 2019

Background

Topology Optimization for Shell-infill Structures

Requires two design schemes for (1) Coated macrostructure, (2) Graded porous Infill

(1) Coated macrostructure design

- ✓ Various approaches have been proposed based on smoothed (filtered) density field.
- ✓ Coating region is identified as material interface between void and solid region.

* A. Clausen, N. Aage, O. Sigmund, Topology optimization of coated structures and material interface problems, CMAME, 2015

** J.P. Groen, J. Wu, O. Sigmund, Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill, CMAME, 2019

*** Y. Luo, Q. Li, and S. Liu, Topology optimization of shell-infill structures using an erosion-based interface identification method, CMAME, 2019

Background

Topology Optimization for Shell-infill Structures

(2) Graded porous infill design: Three approaches

A. Local volume constraint in single macroscale^{*,**}

B. Concurrent topology optimization***,****

C. Homogenization-based multiscale approach****,*****

* J. Wu, N. Aage, R. Westermann, O. Sigumnd, Infill optimization for additive manufacturing, IEEE VCG, 2018

- ✓ Straightforward single-scale approach
- ✓ High computational cost for large-sized macrostructure with small-sized infill
- ✓ Abundant flexibility in infill design
- ✓ High computational cost
- Require to work on connecting infill microstructures
- ✓ Computationally efficient
- Post-processing is required to restore infill microstructures

Gwangju Institute of S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructural infill, SMO, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructural infill, SMO, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructural infill, SMO, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures and topology optimization of coated structures..., CAD, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructural infill, SMO, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructures..., CAD, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures with multifarious-microstructures..., CAD, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization for coated structures and lattice infill, JNME, 2020
 S. Chu, L. Gao, M. Xiao, Y. Zhang, Multiscale topology optimization-based stiffness optimization of 2D coated structures with orthotropic infill, CMAME, 2019

Research Objective

Proposed topology optimization of shell-infill structure for additive manufacturing

- ✓ Five sequential design procedures based on homogenization-based multiscale approach
- Design of coated structure with spatially-varying (functionally graded) infill microstructures
- ✓ Limited in two-dimensional single-load problem

additive manufactured design result

Gwangju Institute of Science and Technology

Key Ideas

A. Design of coated macrostructure

- ✓ Straightforward sequential post-processing approach based on filtered density
- ✓ Suitable for graded infill structure
- $\checkmark\,$ Not suitable if coating structure is critical

B. Design of infill microstructures

- ✓ Orthotropic infill microstructure is restored as explicit geometry using rotated rectangular
- ✓ Easy to generate mesh of design result for re-analysis
- ✓ Suitable for additive manufacturing

Infill structure using rotated rectangular

Part 2

Topology Optimization Formulation

Science and Technology

A. Design of coated macrostructure

Sequential post-processing step after designing macrostructure and infill

- ✓ Simultaneous design of coated macrostructure and infill densities may cause 0-1 convergence problem
- \checkmark Ambiguity between macrostructure density $\rho_{\text{,}}$ and microstructure hole size fields l_{y1} and l_{y2}
- \checkmark Coating region may cause sudden change in material property

$$-R_{\phi}^{2}\nabla^{2}\tilde{d}_{\phi}(\mathbf{x}) + \tilde{d}_{\phi}(\mathbf{x}) = d_{\phi}(\mathbf{x}) \qquad l_{y1}(\mathbf{x}) = \frac{l_{upper} - l_{lower}}{2} \left(d_{y1}(\mathbf{x}) + 1 \right) + l_{lower}$$

$$\rho(\mathbf{x}) = H_{r}(\tilde{d}_{\phi}(\mathbf{x})) \qquad l_{y2}(\mathbf{x}) = \frac{l_{upper} - l_{lower}}{2} \left(d_{y2}(\mathbf{x}) + 1 \right) + l_{lower}$$

$$C_{ij}^{\rho}(\mathbf{x}) = C^{void} + \rho (d_{\phi})^{p} (\tilde{C}'_{ij}^{H}(d_{y1}, d_{y2}, d_{\zeta}, d_{\eta}) - C^{void})$$

Problem in 0-1 convergence of macrostructure density

A. Design of coated macrostructure

Post-processing step after designing macrostructure and infill

- \checkmark To avoid this convergence problem, sequential approach is proposed for coated structure design
- ✓ After designing macrostructure without coating and infill density, infill density is set to 1 (i.e. hole sizes l_{y1} and l_{y2} is forced to be 0) at the interface of macrostructure density

Macrostructure density ρ

 $\begin{array}{c} \text{Macrostructure boundary} \\ \text{density } \rho_{bnd} \end{array}$

Gwangju Institute of Science and Technology

$$-R_{\rho}^{2}\nabla^{2}\tilde{\rho}(\mathbf{x}) + \tilde{\rho}(\mathbf{x}) = \begin{cases} \rho(\mathbf{x}) \text{ in } D & w_{bnd}(\mathbf{x}) = 1 - c_{bnd}\rho_{bnd}(\mathbf{x}) \\ 0 & \text{in } D_{ext} & l_{y1}^{*}(\mathbf{x}) = w_{bnd}(\mathbf{x}) \left[\frac{l_{upper} - l_{lower}}{2} (d_{y1}(\mathbf{x}) + 1) + l_{lower} \right] \\ \rho_{bnd}(\mathbf{x}) = \begin{cases} 1 & \text{if } 0.1 < \tilde{\rho}(\mathbf{x}) < 0.9 \\ 0 & \text{otherwise} & l_{y2}^{*}(\mathbf{x}) = w_{bnd}(\mathbf{x}) \left[\frac{l_{upper} - l_{lower}}{2} (d_{y2}(\mathbf{x}) + 1) + l_{lower} \right] \end{cases} \\ l_{y2}^{*}(\mathbf{x}) = w_{bnd}(\mathbf{x}) \left[\frac{l_{upper} - l_{lower}}{2} (d_{y2}(\mathbf{x}) + 1) + l_{lower} \right] \end{cases}$$

Infill density $(1-l_{y1})(1-l_{y2})$ before and after proposed post-processing

B. Design of infill microstructure

De-homogenization using explicit geometry (rotated rectangular)

- Explicit geometry representation imitating microstructure base cell
- ✓ Easy to handle small-sized microstructure unit cell
- $\checkmark\,$ Easy to generate mesh for re-analysis

Infill structure with very small-sized microstructure unit cell

Microstructure with rectangular hole

Finite element mesh for re-analysis of design result

B. Design of infill microstructure

De-homogenization using explicit geometry (rotated rectangular)

- ✓ From microstructure orientation fields ζ, η, the density field ρ_{void} representing square void region is obtained. Then, its centroid location is determined using image processing
- $\checkmark\,$ Rectangular voids are then removed from the macrostructure

 $\tilde{\rho}_m^A(\mathbf{x}) = H\left(\sum_{i=1}^{n_p} \left\{ \left[\frac{1}{2} + W_{tr}(P\psi_i^A(\mathbf{x}))\right] \left[w_i^{A_{ib}}(\mathbf{x}) - \tilde{w}_i^A(\mathbf{x})\right] \right.$ $\mathbf{e}_{A}(\mathbf{x}) = \begin{bmatrix} \zeta(\mathbf{x}) \\ \eta(\mathbf{x}) \end{bmatrix}, \quad \mathbf{e}_{B}(\mathbf{x}) = \begin{bmatrix} -\eta(\mathbf{x}) \\ \zeta(\mathbf{x}) \end{bmatrix} \qquad \mathbf{p}_{i} = \begin{bmatrix} \cos\left(2\pi\frac{i-1}{n_{p}}\right) \\ \sin\left(2\pi\frac{i-1}{n_{s}}\right) \end{bmatrix} \qquad -R_{w}^{2} \nabla^{2} \begin{bmatrix} \tilde{w}_{i}^{A} \\ \tilde{w}_{i}^{B} \end{bmatrix} + \begin{bmatrix} \tilde{w}_{i}^{A} \\ \tilde{w}_{i}^{B} \end{bmatrix} = \begin{bmatrix} w_{i}^{A} \\ w_{i}^{B} \end{bmatrix} \qquad \qquad \underbrace{V_{i=1} \ \nabla^{2} \ \left(\operatorname{mod}\left(\sum_{j=1, \ j \neq i}^{n_{p}} \left[P\psi_{j}^{A} \ w_{j}^{A_{bnd}}\right] - P\psi_{i}^{A} \ w_{i}^{A_{bnd}}, 1 \right) \right) \right\} \tilde{w}_{i}^{A}(\mathbf{x})$ $-\left[\frac{1}{2}+W_{tr}(1-l_{y1}(\mathbf{x}))\right]\right)\,,$ $w_i^{A_{bnd}}(\mathbf{x}) = H(\tilde{w}_i^A - 0.1)H(0.9 - \tilde{w}_i^A)$ $\nabla \cdot \left\{ (w_i^A(\mathbf{x}) + \epsilon_o) (\nabla \psi_i^A(\mathbf{x}) - \mathbf{e}_A(\mathbf{x})) \right\} = 0$ $\tilde{\rho}_m^B(\mathbf{x}) = H \left(\sum_{i=1}^{n_p} \left\{ \left[\frac{1}{2} + W_{tr}(P\psi_i^B(\mathbf{x})) \right] \left[w_i^{B_{ib}}(\mathbf{x}) - \tilde{w}_i^B(\mathbf{x}) \right] \right. \right.$ $w_i^{B_{bnd}}(\mathbf{x}) = H(\tilde{w}_i^B - 0.1)H(0.9 - \tilde{w}_i^B)$ $\nabla \cdot \left\{ (w_i^B(\mathbf{x}) + \epsilon_o) \left(\nabla \psi_i^B(\mathbf{x}) - \mathbf{e}_B(\mathbf{x}) \right) \right\} = 0$ $-W_{st}\left(\mathrm{mod}\left(\sum_{i=1,\ i\neq i}^{n_p} \left[P\psi_j^B \ w_j^{B_{bnd}}\right] - P\psi_i^B \ w_i^{B_{bnd}}, 1\right)\right)\right\}\tilde{w}_i^B(\mathbf{x})$ $w_i^A(\mathbf{x}) = H\left(\rho(\mathbf{x}) - \frac{1}{2}\right) H\left(\mathbf{e}_A(\mathbf{x}) \cdot \mathbf{p}_i - \cos(\frac{2\pi}{n_o})\right) H\left(\mathbf{e}_A(\mathbf{x}) \cdot \mathbf{p}_{i+1} - \cos(\frac{2\pi}{n_o})\right)$ $w_i^{A_{ib}}(\mathbf{x}) = H(\tilde{w}_i^A - 0.1)$ $-\left[\frac{1}{2}+W_{tr}(1-l_{y2}(\mathbf{x}))\right]$ $w_i^B(\mathbf{x}) = H\left(\rho(\mathbf{x}) - \frac{1}{2}\right) H\left(\mathbf{e}_B(\mathbf{x}) \cdot \mathbf{p}_i - \cos(\frac{2\pi}{n})\right) H\left(\mathbf{e}_B(\mathbf{x}) \cdot \mathbf{p}_{i+1} - \cos(\frac{2\pi}{n})\right)$ $w_i^{B_{ib}}(\mathbf{x}) = H\big(\tilde{w}_i^B - 0.1\big).$ $\rho_{void}(\mathbf{x}) = \rho(\mathbf{x})\tilde{\rho}_m^A(\mathbf{x})\tilde{\rho}_m^B(\mathbf{x})$ Centroid locations Infill design Infill design Gwangju Institute of using explicit rotated rectangular using implicit density field Science and Technology

Part 3 Numerical Examples

MBB Beam Design

Shell-infill design for compliance minimization problem

MBB Beam Design

Shell-infill design for compliance minimization problem

Science and Technology

Bell Crank Design

Shell-infill design for compliance minimization problem

Bell Crank Design

Shell-infill design for compliance minimization problem

CAD model and its reanalysis result

Additive manufactured design result

Size: 240 X 150 X 30 mm Model: A multi-jet printing machine (Projet 3510 SD) Resolution: 0.0250-0.05 mm per 25.4mm Printing material: Ultraviolet curing plastic (Visijet M3 Crystal)

Bell CrankDesign

Shell-infill design for compliance minimization problem

Design result with various loading conditions

$\mathbf{t_{d1}} \text{ (traction at } \Gamma_{t1})$		$\mathbf{t_{d1}}$ (traction at Γ_{t2})
Α	$(1,0) \ N/m^2$	$(0,1) \ N/m^2$
В	$(-\frac{5}{3},0) N/m^2$	$(0, \frac{1}{3}) N/m^2$
C	$(\frac{1}{3},0) N/m^2$	$(0, \frac{5}{3}) N/m^2$
D	$(-\frac{1}{3},0) \ N/m^2$	$(0, \frac{5}{3}) N/m^2$

loading conditions

Any Questions?

