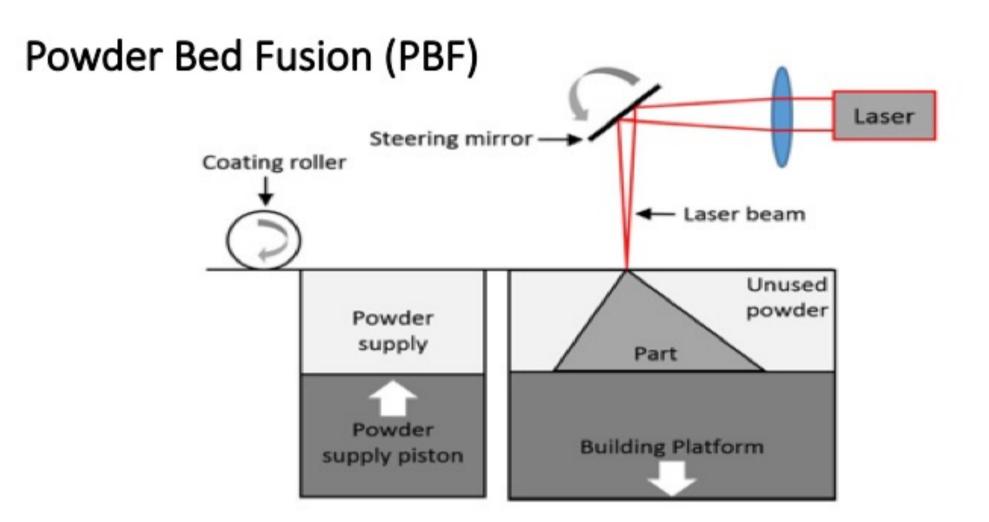
Coupling structural optimization and trajectory optimization methods in additive manufacturing

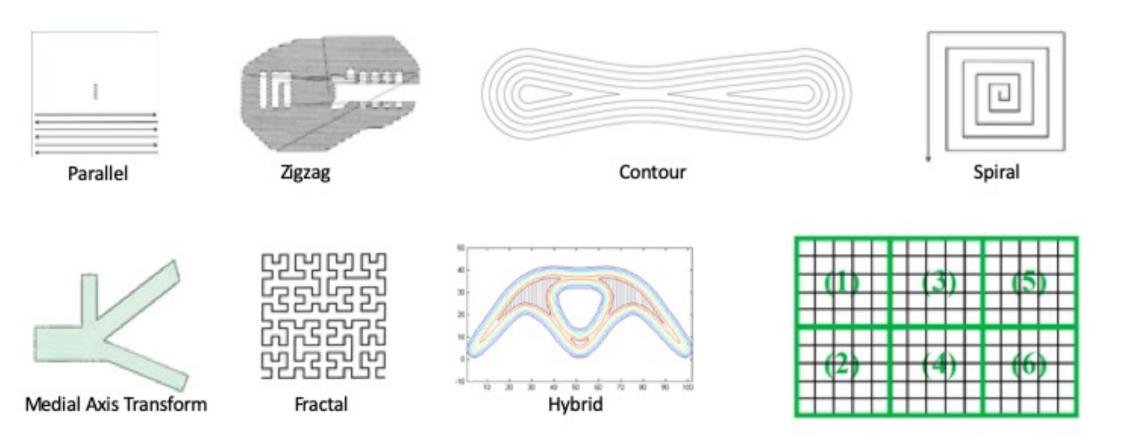
Mathilde Boissier

PhD advisors: Grégoire Allaire, Christophe Tournier



Bikas, H., P. Stavropoulos, and G. Chryssolouris, Additive Manufacturing Methods and Modelling Approaches: A Critical Review In: The International Journal of Advanced Manufacturing Technology 83.1-4 (2016), pp. 389–405.

Notion of "good path" (a)



(a) D. Ding, Z. Pan, D. Cuiuri, H. Li, and S. van Duin, Advanced design for additive manufacturing: 3d slicing and 2d path planning, New trends in 3d printing, (2016), pp. 1–23.

Objectives of this work

How to use shape optimization to facilitate the generation of "good" scanning path? Objectives:

- Optimization of the path "from scratch"
- Concurrent optimization between part shape and scanning path

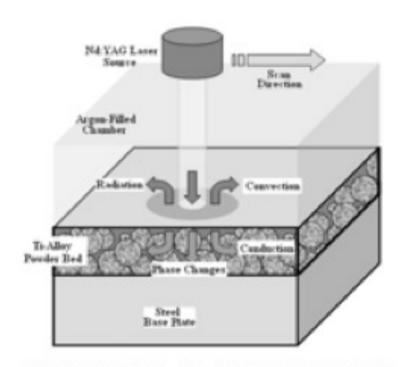
Bibliography:

- T.M. ALAM, Some optimal control problem of partial differential equations and applications to the selective laser melting process (SLM), PhD thesis, Université Polytechnique Hauts-de-France, 2020
- Q. Chen, J. Liu, X. Liang, and A. C. To, A level-set based continuous scanning path optimization method for reducing residual stress and deformation in metal additive manufacturing, Computer Methods in Applied Mechanics and Engineering, 360 (2020), p. 112719.
- M. Boissier, G. Allaire, C. Tournier, Scanning path optimization using shape optimization tools, Structural and Multidisciplinary Optimization, 61:6, pp. 2437-2466, 2020

- Modelling assumptions
- Scanning path optimization
- Part optimization
- Concurrent optimization

- Modelling assumptions
- Scanning path optimization
- Part optimization
- Concurrent optimization

Modelling the scanning process (a)



Microscale modelling:

- accurate model for the change of state and melting pool
- 4 states considered: powder, solid, liquid and gaseous

Macroscale modelling:

- simplified model without accurate computation of the change of state and melting pool
- 2 states considered: powder, solid

STAKES AT A MACROSCOPIC SCALE

- thermo-mechanics: thermal expansion, residual stresses, solidification of a layer
- kinematics: minimal execution time

(a) T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive manufacturing of metallic components—process, structure and properties, Progress in Materials Science, 92 (2018), pp. 112–224.

Steady model

The whole source is switched on at once

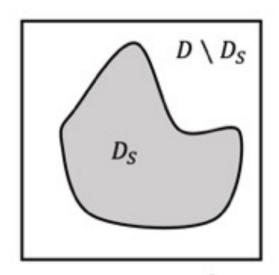
Dirac function of the path Γ : $q = P\chi_{\Gamma}$

Temperature equation:

$$\begin{cases} -\nabla(\lambda\nabla y) + \beta(y - y_{ini}) = P\chi_{\Gamma}, x \in D \\ \lambda\partial_n y = 0, \end{cases} x \in \partial D$$

Optimization problem:

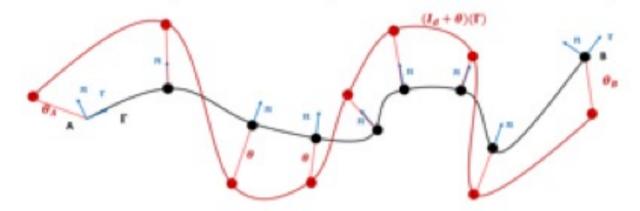
$$\min L_F = |\Gamma| \qquad s. \, t. \, \begin{cases} \forall x \in D_S, & y(x) \ge y_\phi \\ \forall x \in D \setminus D_S, & y(x) \le y_{M,out} \\ \forall x \in D_S, & y(x) \le y_{M,in} \end{cases}$$



- Modelling assumptions
- Scanning path optimization
- · Object's shape optimization
- Concurrent optimization

Optimization algorithm

Gradient computation: shape differentiation theory (Differentiate and then discretize)



Γ regular curve with chosen orientation, tangent τ, normal n, curvature κ and endpoints A and B.

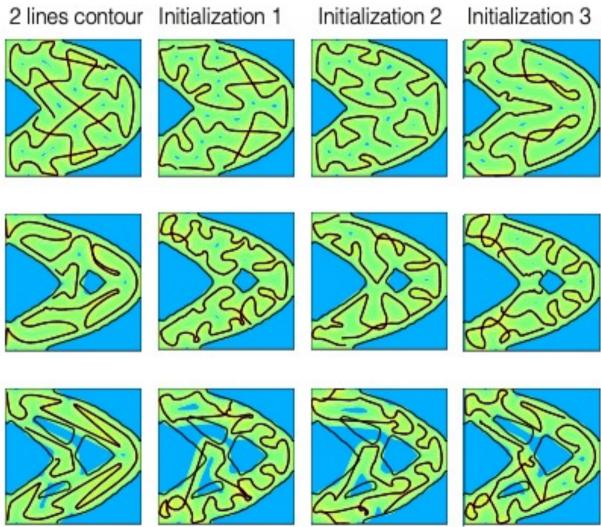
Shape derivative of
$$J(\Gamma) = \int\limits_{\Gamma} f(s)ds$$
: $DJ(\Gamma)(\theta) = \int\limits_{\Gamma} (\partial_n f + \kappa f)\theta \cdot nds + f(B)\theta(B) \cdot \tau(B) - f(A)\theta(A) \cdot (A)$

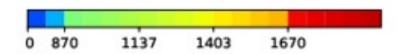
Gradient descent:

$$J(\Gamma^{n+1}) = J(\Gamma^n) + DJ(\Gamma^n)(\theta) + o(\theta) \qquad \qquad \theta \text{ chosen such that } J(\Gamma^{n+1}) \leq J(\Gamma^n)$$

Combined with an Augmented Lagrangian method to deal with the constraints

Different initializations – Aluminum ($\lambda = 130Wm^{-1}K^{-1}$)





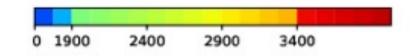
- Results really dependent on the initialization
- Correct adaptation to the shape if allowed by the conductivity => shape thickness

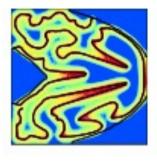
Different initializations – Titanium ($\lambda = 15Wm^{-1}K^{-1}$)

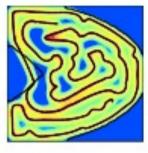
2 lines contour Initialization 1

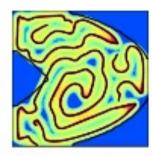
Initialization 2

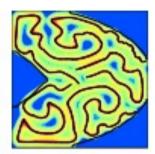
Initialization 3

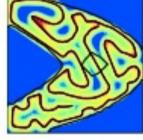


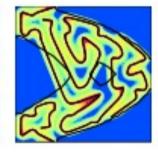


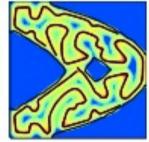


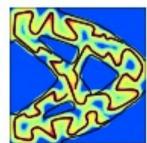












- Low conductivity complicates the optimization
- Results really dependent on the initialization
- Correct adaptation to the shape if allowed by the conductivity => shape thickness

- Modelling assumptions
- Scanning path optimization
- · Part optimization
- Concurrent optimization

Part optimization

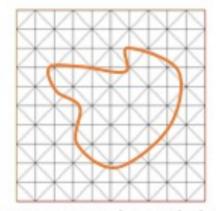
$$\begin{aligned} & \min_{\Omega} \mathit{Cply}(\Omega) = \int_{\Omega} \mathit{Ae}(u) : e(u) \, dx \; \; \text{such that} \; \int_{\Omega} \, dx = V_{target} \\ & \left\{ \begin{aligned} & -div \big(A \epsilon(u) \big) = 0, & x \in \Omega, \\ & A \epsilon(u) \cdot n = g, & x \in \partial \Omega_N, \\ & A \epsilon(u) \cdot n = 0, & x \in \partial \Omega_F, \\ & u = 0, & x \in \partial \Omega_D. \end{aligned} \right. \\ & A, \; \text{Hooke tensor} \qquad \epsilon(u) = \frac{1}{2} (\nabla u + \nabla u^T) \end{aligned}$$

Gradient computation: shape differentiation theory (Differentiate and then discretize)

Combined with an Augmented Lagrangian method and a dichotomy to deal with the volume constraint

Numerical representation: level set (a)

$$\begin{cases} \psi(x) < 0, & x \in \Omega, \\ \psi(x) = 0, & x \in \partial\Omega, \\ \psi(x) > 0, & x \in D \setminus \overline{\Omega}. \end{cases}$$



G. Allaire, F. Jouve, and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194 (2004), pp. 363–393.

Results - cantilever

 $V_{tar}=1.1V^{\scriptscriptstyle 0}$

- Modelling assumptions
- Scanning path optimization
- Partoptimization
- Concurrent optimization

Coupling part and path optimizations

$$\min_{\Omega,\Gamma} J(\Omega,\Gamma) = \int_{\Omega} Ae(u) \cdot e(u) \, dx + \int_{\Gamma} ds$$

$$Cply \qquad L_F$$

$$\min_{\Omega,\Gamma} J(\Omega,\Gamma) = \underbrace{\int_{\Omega} Ae(u) : e(u) \, dx}_{Cply} + \underbrace{\int_{\Gamma} ds}_{L_F}$$

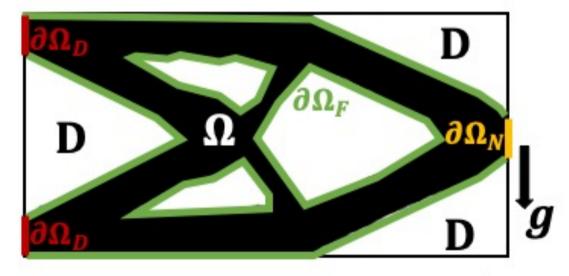
$$\begin{cases} \int_{\Omega} dx = V_{target} \\ C(\Omega,\Gamma) = C_{\phi}(\Omega,\Gamma) + C_{M,in}(\Omega,\Gamma) + C_{M,out}(\Omega,\Gamma) = 0 \end{cases}$$

$$C_{\phi}(\Omega,\Gamma) = \int_{\Omega} \left[\left(y_{\phi} - y \right)^+ \right]^2 dx, \quad C_{M,in}(\Omega,\Gamma) = \int_{\Omega} \left[\left(y - y_{M,in} \right)^+ \right]^2 dx \,, \quad C_{M,out}(\Omega,\Gamma) = \int_{D \setminus \Omega} \left[\left(y - y_{M,out} \right)^+ \right]^2 dx \,,$$

$$\begin{cases} -div(A\epsilon(u)) = 0, & x \in \Omega, \\ A\epsilon(u) \cdot n = g, & x \in \partial\Omega_N, \\ A\epsilon(u) \cdot n = 0, & x \in \partial\Omega_F, \\ u = 0, & x \in \partial\Omega_D. \end{cases}$$

A, Hooke tensor
$$\epsilon(u) = \frac{1}{2}(\nabla u + \nabla u^T)$$

$$\begin{cases} -\nabla(\lambda\nabla y) + \beta(y - y_{ini}) = P\chi_{\Gamma}, x \in D, \\ \lambda\partial_n y = 0, & x \in \partial D. \end{cases}$$



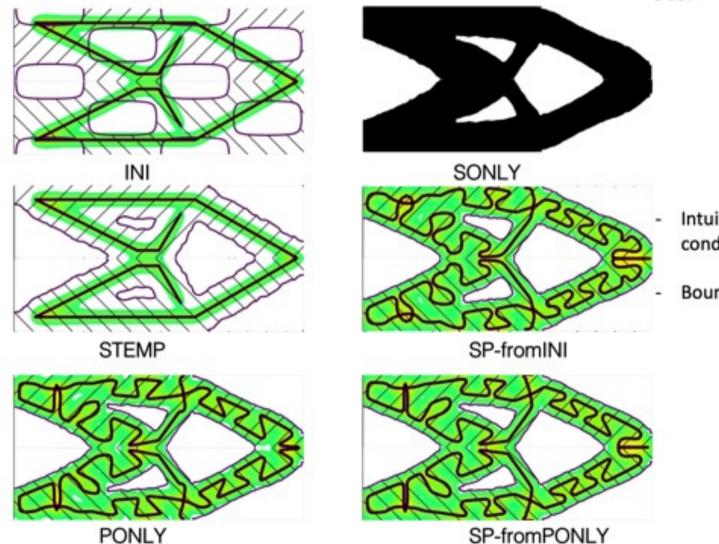
Derivatives with respect to the shape and path

$$\begin{split} &D_{\Omega}Cply(\Omega,\Gamma)(\theta_{\Omega}) = \int_{\partial\Omega_F} \left(-Ae(u):e(u)\right)\theta_{\Omega}\cdot n_{\Omega}\,ds \qquad \qquad D_{\Omega}L_F(\Omega,\Gamma)(\theta_{\Omega}) = 0 \\ &D_{\Omega}V(\Omega,\Gamma)(\theta_{\Omega}) = \int_{\partial\Omega_F} \theta_{\Omega}\cdot n_{\Omega}\,ds \\ &D_{\Omega}C(\Omega,\Gamma)(\theta_{\Omega}) = \int_{\partial\Omega_F} \left(\left(y_{\phi}-y\right)^+ + \left(y-y_{M,D_S}\right)^+ - \left(y-y_{M,D\setminus D_S}\right)^+\right)\theta_{\Omega}\cdot n_{\Omega}\,ds \\ &D_{\Gamma}Cply(\Omega,\Gamma)(\theta_{\Gamma}) = 0 \qquad \qquad D_{\Gamma}L_F(\Omega,\Gamma)(\theta_{\Gamma}) = \int_{\Gamma} \kappa\theta_{\Gamma}\cdot n_{\Gamma}\,ds + \theta_{\Gamma}(B)\cdot \tau_{\Gamma}(B) - \theta_{\Gamma}(A)\cdot \tau_{\Gamma}(A) \\ &D_{\Gamma}V(\Omega,\Gamma)(\Omega,\Gamma)(\theta_{\Gamma}) = 0 \end{split}$$

$$D_{\Gamma}C(\Omega,\Gamma)(\theta_{\Gamma}) = \int_{\Gamma} \ -P(\partial_{n}p + \kappa p)\theta_{\Gamma} \cdot n_{\Gamma}ds - Pp(B)\theta_{\Gamma}(B) \cdot \tau_{\Gamma}(B) + Pp(A)\theta_{\Gamma}(A) \cdot \tau_{\Gamma}(A)$$

With
$$\mathbf{p} \in \mathrm{H}^1(\mathbf{D}, \mathbb{R}^2)$$
 solution of
$$\begin{cases} -\nabla (\lambda \nabla p) + \beta p = 2 \left[\left(y_\phi - y \right)^+ \mathbb{I}_{D_S} - \left(y - y_{M,in} \right)^+ \mathbb{I}_{D_S} - \left(y - y_{M,out} \right)^+ \mathbb{I}_{D \setminus D_S} \right], & x \in D \\ \lambda \partial_n p = 0, & x \in D \end{cases}$$

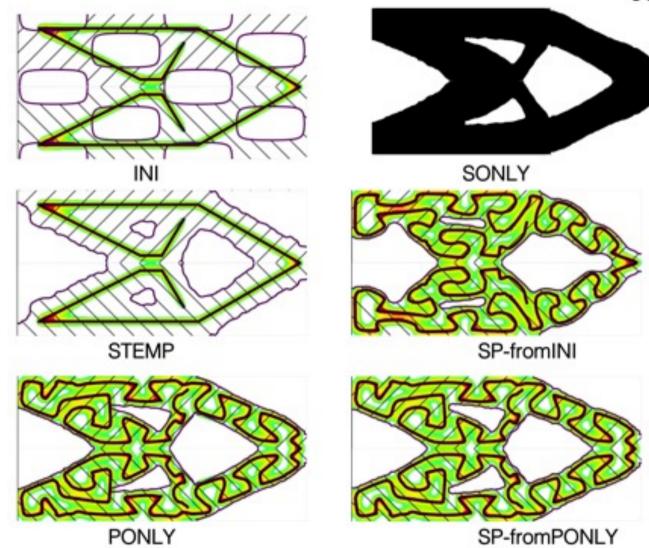
Results – cantilever – aluminum – $V_{tar} = 1.1V^0$



Intuition of a link between part's thickness and conductivity => Omega-shape path design

Boundary adaptation to the path

Results – cantilever – titanium – $V_{tar} = 1.1V^0$



- Intuition of a link between part's thickness and conductivity => Omega-shape path design => Wave-shape path design
- Boundary adaptation to the path

Conclusions and perspectives

Concurrent path and shape optimization

- Confirms the importance of the link between thickness and conductivity
- Boundary adapted to the path

Perspectives

- Further test the optimization on other test cases, a complexified model
- Include path topology modifications into the concurrent optimization
- Adapt the constraint to reality: advantage the phase constraint, define "steady state" constraints modelling transient quantities (kinematics) to take benefit from the very easy resolution process and shape optimization theory
- Optimize in the transient (general) model
- Add the resolution of a mechanical problem (full resolution or inherent strain method)
- 3D considerations

References

References on which this talk is based on

- M.Boissier, G.Allaire, C.Tournier, Additive Manufacturing Scanning Paths Optimization Using Shape Optimization Tools, SMO, 61:6, pp. 2437-2466 (2020)
- M.Boissier, G.Allaire, C.Tournier, Concurrent shape optimization of the part and scanning path for additive manufacturing, submitted (2021). (hal-03124075).
- M.Boissier, Coupling structural optimization and trajectory optimization methods in additive manufacturing, PhD thesis (2020)

Further reference for path optimization considering unsteadiness:

 M.Boissier, G.Allaire, C.Tournier, Time dependent scanning path optimization for the powder bed fusion additive manufacturing process, submitted (2021). (hal-03202102).