Mo	tiva	tion

Feature mapping approach

Examples

Conclusions

Topology optimization with discrete geometric components made of composite materials

Hollis Smith & Julián Norato

University of Connecticut

April 29, 2021

Motivation O		Feature mapping approach	Examples 0000000	Conclusions O
D	 0			

Presentation Overview

2 Feature mapping approach

4 Conclusions

Motivation	Feature mapping approach	Examples	Conclusions
•			

Motivation

• Want to design with *continuous-fiber* reinforced components:

www.rockwestcomposites.com

Daniel & Ishai, 2nd ed.

- superior mechanical properties
- manufacturing lends itself to geometric primitives (e.g., bars and plates)

Examples

Geometry Projection

- Primitive definition
 - bars defined as offset segments
 - Ω_b : points within r_b of the medial segment are solid
 - Segment parameterized by two endpoints.
- Primitives mapped to density field
 - A density field ρ_b computed for each bar
 - ρ_b: smooth Heaviside of signed-distance to boundary Γ_b

Examples

Combining primitives

size variable α_b for each bar

- Boolean union is a smooth-maximum $\rho = \widetilde{\max}_b (\rho_b \cdot \alpha_b)$
- *p*-norm and KS-function used previously for a single or multiple isotropic materials, but not compatible with *anisotropic* materials.
- Here, we use the softmax:

$$\operatorname{softmax}(\mathbf{x}; \boldsymbol{p}) = \sum_{i} w_{i}(\mathbf{x}; \boldsymbol{p}) x_{i}$$

where

$$w_i = \operatorname{softargmax}_i(\mathsf{x}; p) = rac{e^{p \mathsf{x}_i}}{\sum_j e^{p \mathsf{x}_j}}$$

Motivation	Feature mapping approach	Examples	Conclusions
	0000		

Bar material properties

- reinforcement is aligned with the axis of each bar
- material properties rotate with components:

$$R_{ii'}^b = \hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_{i'b}$$
$$(\mathbf{C}_b)_{ijkl} = \sum_{i',j',k',l'} R_{ii'}^b R_{jj'}^b R_{kk'}^b R_{ll'}^b (\mathbf{C}_b)_{i'j'k'l'}$$

• design-dependent material properties

Μ	oti	va	tic	n

Examples

Material interpolation

 $\check{\rho}_e$ is the penalized element density

- softmax weights *w_i* used to interpolate material properties of each component
- weights form a convex combination: $\sum_{i} w_{i} = 1; w_{i} > 0.$
- large softmax parameter p renders a one-hot vector of w_i
- $\bullet\,$ size variable $\alpha\,$ controls which component dominates intersections
- elasticity tensor:

$$\mathsf{C} = \mathsf{C}_{\mathsf{void}} + \sum_{b} w_b \breve{
ho}_b (\mathsf{C}_b - \mathsf{C}_{\mathsf{void}})$$

Motivation	Feature mapping approach	Examples	Conclusions
O		●○○○○○○	O

Motivation	Feature mapping approach	Examples	Conclusions
		000000	

MBB beam

Motivation	Feature mapping approach	Examples	Conclusions
		000000	

MBB beam – volume sweep

Mot	tiva	tion

Feature	mapping	approach
0000		

Examples 000●000

Bridge

Motivation	Feature mapping approach	Examples	Conclusions
		0000000	

Bridge – volume sweep

Motivation	Feature mapping approach	Examples	Conclusions
O		0000000	○

Bridge – volume sweep

Motivation O	Feature mapping approach	Examples oooooo●o	Conclusions

3D Cantilever

- three load cases
- $\circ \sim 118,000$ elements

Motivation	Feature mapping approach	Examples	Conclusions
O		ooooooo●	○

3D Cantilever – comparison

Motivation	Feature mapping approach	Examples	Conclusions
O		ooooooo●	○

3D Cantilever – comparison

Motivation	Feature mapping approach	Examples	Conclusions
			•

Conclusions

- First topology optimization method for composites made from geometric primitives
- Targeted toward long-fiber reinforced materials
- Black aluminum approach is sub-optimal

Thanks to the U.S. Office of Naval Research, Grant Number N00014-17-1-2505, for support to conduct this work.