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Introduction

Electro-Active Polymers (EAPs) is constantly expanding field
of smart materials:

Dielectric elastomers: electrically induced large
deformation+low stiffness.
Soft robot, Braile displays, deformable lenses, energy
generators...

Piezoelectric polymers: electrically induced large
deformation+much larger stiffness. RECIPROCAL EFFECT.
Actuators, tactile sensors, energy harvesters, acoustic
transducers...
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Introduction

Electro-Active Polymers (EAPs) is constantly expanding field
of smart materials:

Dielectric elastomers: electrically induced large
deformation+low stiffness.
Soft robot, Braile displays, deformable lenses, energy
generators...

Piezoelectric polymers: electrically induced large
deformation+much larger stiffness. RECIPROCAL EFFECT.
Actuators, tactile sensors, energy harvesters, acoustic
transducers...

Topology optimization of smart materials opens up for the
possibility of exploiting the unconventional properties of these
materials by conceiving new designs beyond human intuition
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Aim

We propose a density-based topology optimisation approach
in the context of electromechanics

We consider both a dielectric elastomer and a piezoelectric
polymer model

Large electrically induced deformations may occur, so finite
elasticity modeling is required

Multiphysics problem: equilibrium is obtained as the solution
of a couple system of nonlinear PDE’s
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Nonlinear continuum electromechanics

The solid occupies the reference configuration B0, and after being
deformed, the deformed configuration, B.

φ is the deformation and F = ∇0φ(X) the deformation gradient.

H and J are the cofactor and determinant of F respectively.
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Elastic equilibrium

The elastic equilibrium comes as the solution of

divP + f0 = 0; in B0;

Pn = t0; on ∂tB0;

φ = φ̄; on ∂φB0,

where f0 a distributed external force and t0 a boundary force. φ̄
Dirichlet boundary condition.

P the first Piola-Kirchhoff stress tensor.
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Gauss and Faraday’ laws

Gauss’s law:

divD0 − ρ0 = 0; in B0;

D0 ·N = −ω0; on ∂ωB0,

where D0 the electric displacement, ρ0 the electric volumetric
charge and ω0 the boundary charge.

Faraday’s law:

E0 = −∇0ϕ; in B0;

ϕ = ϕ̄; on ∂ϕB0,

where E0 the electric field and ϕ the scalar potential.
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Constitutive equations

In order to close the equilibrium state equations we use the
Helmhotz functional:

Ψ = Ψ(X,F,E0),

representing an energy functional per undeformed volume.
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In order to close the equilibrium state equations we use the
Helmhotz functional:

Ψ = Ψ(X,F,E0),

representing an energy functional per undeformed volume.

Then {
P = ∂FΨ(X,F,E0),
D0 = −∂E0Ψ(X,F,E0)

which together with the previous mechanical and electrical
equilibria gives rise to a coupled system of fully nonlinear PDE’s

FE numerical approximation of the continuum will be
approximated by a a Newton-Raphson algorithm.
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Dielectric elastomer

Example of a constitutive model for isotropic dielectric elastomers
in finite strain electromechanics:

Ψ(X,F,E0) = Ψm(X,F) + Ψem(X,F,E0).

with,

Mechanical (Mooney-Rivlin):

Ψm(F) = ΨMR
m (F) :=

µ1

2
IIF +

µ2

2
IIH + f (J);

f (J) = − (µ1 + 2µ2) ln(J) +
λ

2
(J − 1)2 , IIA = A · A

Electricalmechanical (isotropic ideal dielectric):

Ψem(F,E0) = −εrε0

2J
IIHE0 = −εrε0

2J
(HE0 ·HE0) ,
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Dielectric elastomer

E Young’s modulus and ν Poisson’s ratio:

µ1 + µ2 =
E

2(1 + ν)
; λ− 2µ2 =

Eν

(1 + ν)(1− 2ν)

ε0 = 8.854× 10−12 Fm−1 electric permitivity of vaccum

εr relative electric permitivity



Introduction Topology optimization problem Numerical examples Conclusions

Piezoelectric polymer

Mechanical:

Ψm(F) = ΨMR
m (F) +

µ3

2
(IIFV + IIHV)

+
µ4

4

(
II 2
FV + II 2

HV

)
+ g(J);

g(J) = − (µ3 + µ4) ln(J) +
λ

2
(J − 1)2 ,

with V the polarization direction;

Electromechanical:

Ψem(X,F,E0) = −ε1

2
IIHE0 −

ε2

2
(E0 · V)2

− e1V · ẼE0 − e2 (E0 · V) tr(Ẽ)

− e3 (E0 · V)
(
N · ẼV

)
,
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Problem

Minimize J (Φχ) = −
∫
∂B0

l0 · Φχ dA,

subject to:

The displacement Φ is obtain from the solution of the
nonlinear electromechanics system with constitutive law given
by the Helmholtz energy functional

Ψ(X,F,E0) = Ψχ(χ(X),F,E0),

where χ(X) ∈ {0, 1} is the discrete design differentiating solid
from void regions;

Volumen constraint:

∫
Ω0

χ(X) dV ≤ c |Ω0|.

l0 unitary fixed vector in the direction where the displacement is
maximized and defined on ∂B0.
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SIMP approach

From discrete (binary) to density approach: χ→ ρ, ρ ∈ {0, 1}

Density filtering:

ρ̃(X) = (ρ ∗∆)(X) =

∫
B0

ρ(X′)∆(‖X− X′) dV ,

with ∆ the cone convolution kernel

Density projection: we define the physical density field

ρ̂(X) =
tanh(βη) + tanh(β(ρ̃(X)− η))

tanh(βη) + tanh(β(1− η))
,

Interpolated strain energy density:
Ψ(X,F,E0) = ΨSIMP(ρ̂(X),F,E0)
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Energy interpolation scheme

Homogenized Helmholtz functional

Ψ = ΨSIMP(ρ̂(X),F,E0)

:= (ρ̂(X))pm Ψsolid
m (F) + [1− (ρ̂(X))pm ]Ψvoid

m (F)︸ ︷︷ ︸
Homogenised mechanical component

+ (ρ̂(X))pe Ψsolid
em (F,E0) + [1− (ρ̂(X))pe ]Ψvoid

em (E0)︸ ︷︷ ︸
Homogenised electromechanical component

,

pm and pe are, respectively, the mechanical and electromechanical
penalisation exponents
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Homogenized Helmholtz functional

Ψ = ΨSIMP(ρ̂(X),F,E0)

:= (ρ̂(X))pm Ψsolid
m (F) + [1− (ρ̂(X))pm ]Ψvoid

m (F)︸ ︷︷ ︸
Homogenised mechanical component

+ (ρ̂(X))pe Ψsolid
em (F,E0) + [1− (ρ̂(X))pe ]Ψvoid

em (E0)︸ ︷︷ ︸
Homogenised electromechanical component

,

pm and pe are, respectively, the mechanical and electromechanical
penalisation exponents

STUDYING THE INFLUENCE OF THESE PARAMETERS
IN THE DESIGN PROCESS IS OF MAJOR IMPORTANCE
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Energy interpolation scheme: void modeling

Void energy

Mechanical:

Ψvoid
m (F) :=

α

2
(F− I) : C|0 : (F− I),

with C|0 solid elasticity tensor at the origin (F = I)

Electromechanical:

Ψvoid
em (E0) =

(
− ε0

2J
IIHE0

)∣∣∣
H=I,J=1

= −ε0

2
IIE0
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Example 1: dielectric elastomer actuator

Example 1. Unimorph dielectric elastomer-based device, completely
fixed at Y = 0, and subjected to ∆ϕ = 8× 103 V/m. Symmetric
boundary conditions have been applied at
Xmed = (max(X ) + min(X )) /2, leading to a discretisation of
180× 30× 2 Q2 (tri-quadratic) Finite Elements, yielding a total of
(180× 2 + 1)× (30× 2 + 1)× (2× 2 + 1)× 3 = 330315 dofs for
φ and (180× 2 + 1)× (30× 2 + 1)× (2× 2 + 1) = 110105 for ϕ.
Objective function aiming at maximising Z direction of
displacement at point A.



Introduction Topology optimization problem Numerical examples Conclusions

Example 1: dielectric elastomer actuator

pm = 3

pe/pm = 1 pe/pm = 1.5 pe/pm = 2
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Dielectric-elastomer base gripper

Dielectric elastomer-based gripper. Deformed configuration for
voltage gradiens ∆ϕ of ( 2

3 × 103)× {24} V/m. Results obtained
with the optimised design corresponding with pm = 3, pe/pm = 2
using continuation strategy
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Example 2: piezoelectric polymer actuator

Bimorph piezoelectric polymer-based device, completely fixed at
Y = 0, and subjected to ∆ϕ = 104 V/m. Symmetric boundary
conditions have been applied at Xmed = (max(X ) + min(X )) /2.
Objective function aiming at maximising Z direction of
displacement at point A. Polarisation profile across the thickness
(vector V in equilibrium equations).
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Example 2: piezoelectric polymer actuator

pm = 5

pe/pm = 1 pe/pm = 1.5 pe/pm = 2
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Example 3: multilayered torsional piezoelectric actuator

Design of the multilayered torsional piezoelectric actuator for
pm = 3 and pe = 6,
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Conclusions

Density-based TO in the context of nonlinear
electromechanics, focusing on electro-active materials, capable
of undergoing large electrically induced deformations

Energy interpolation scheme for void and solid regions that
works out preventing numerical instabilities associated to low
and intermediate densities

In view of numerical simulations, pe > pm is strongly adviced.
This is in opposition with linear piezoelectricity, where
non-penalisation of electromechanical energy is needed
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