Introduction 00000000	Topology optimization problem	Numerical examples	Conclusions 0

Density-based Topology Optimisation considering nonlinear electromechanics¹

R. Ortigosa, J. Martínez-Frutos, D. Ruiz, A. Donoso, J.C. Bellido

Departamento de Matemáticas Universidad de Castilla-La Mancha Ciudad Real, SPAIN

March, 2021

¹To appear in SMO

Introduction • • • • • • • • • • • • • • • • • • •	Topology optimization problem	Numerical examples	Conclusions O
Introduction			

• Electro-Active Polymers (EAPs) is constantly expanding field of smart materials:

Introduction • • • • • • • • • • • • • • • • • • •	Topology optimization problem	Numerical examples	Conclusions O
Introduction			

- Electro-Active Polymers (EAPs) is constantly expanding field of smart materials:
 - Dielectric elastomers: electrically induced large deformation+low stiffness. Soft robot, Braile displays, deformable lenses, energy generators...

Introduction • • • • • • • • • • • • • • • • • • •	Topology optimization problem	Numerical examples	Conclusions O
Introduction			

- Electro-Active Polymers (EAPs) is constantly expanding field of smart materials:
 - Dielectric elastomers: electrically induced large deformation+low stiffness. Soft robot, Braile displays, deformable lenses, energy generators...
 - **Piezoelectric polymers:** electrically induced large deformation+much larger stiffness. RECIPROCAL EFFECT. Actuators, tactile sensors, energy harvesters, acoustic transducers...

Introduction • • • • • • • • • • • • • • • • • • •	Topology optimization problem	Numerical examples	Conclusions O
Introduction			

- Electro-Active Polymers (EAPs) is constantly expanding field of smart materials:
 - Dielectric elastomers: electrically induced large deformation+low stiffness. Soft robot, Braile displays, deformable lenses, energy generators...
 - **Piezoelectric polymers:** electrically induced large deformation+much larger stiffness. RECIPROCAL EFFECT. Actuators, tactile sensors, energy harvesters, acoustic transducers...

Topology optimization of smart materials opens up for the possibility of exploiting the unconventional properties of these materials by conceiving new designs beyond human intuition

Introduction •••••••	Topology optimization problem	Numerical examples	Conclusions 0
Aim			

• We propose a density-based topology optimisation approach in the context of electromechanics

Introduction •••••••	Topology optimization problem	Numerical examples	Conclusions O
Aim			

- We propose a density-based topology optimisation approach in the context of electromechanics
- We consider both a dielectric elastomer and a piezoelectric polymer model

Introduction o e o o o o o	Topology optimization problem	Numerical examples	Conclusions O
Aim			

- We propose a density-based topology optimisation approach in the context of electromechanics
- We consider both a dielectric elastomer and a piezoelectric polymer model
- Large electrically induced deformations may occur, so finite elasticity modeling is required

Introduction •••••••	Topology optimization problem	Numerical examples	Conclusions O
Aim			

- We propose a density-based topology optimisation approach in the context of electromechanics
- We consider both a dielectric elastomer and a piezoelectric polymer model
- Large electrically induced deformations may occur, so finite elasticity modeling is required
- Multiphysics problem: equilibrium is obtained as the solution of a couple system of nonlinear PDE's

Introduction	
000000000	

Topology optimization problem

Numerical examples

Nonlinear continuum electromechanics

The solid occupies the reference configuration \mathcal{B}_0 , and after being deformed, the deformed configuration, \mathcal{B} .

 ϕ is the deformation and ${\bf F}=\nabla_0\phi({\bf X})$ the deformation gradient.

 ${\bf H}$ and J are the cofactor and determinant of ${\bf F}$ respectively.



Introduction 00000000	Topology optimization problem	Numerical examples	Conclusions O
Elastic equili	brium		

The elastic equilibrium comes as the solution of

 $\begin{aligned} \operatorname{div} \mathbf{P} + \mathbf{f}_0 &= \mathbf{0}; & \text{in } \mathcal{B}_0; \\ \mathbf{Pn} &= \mathbf{t}_0; & \text{on } \partial_t \mathcal{B}_0; \\ \phi &= \bar{\phi}; & \text{on } \partial_\phi \mathcal{B}_0, \end{aligned}$

where f_0 a distributed external force and t_0 a boundary force. $\bar{\phi}$ Dirichlet boundary condition.

P the first Piola-Kirchhoff stress tensor.

Introduction 00000000	Topology optimization problem	Numerical examples	Conclusions 0
	un alas d'Inserva		

Gauss and Faraday' laws

• Gauss's law:

$$\begin{split} & \operatorname{div} \mathbf{D}_0 - \rho_0 = 0; & \text{ in } \mathcal{B}_0; \\ & \mathbf{D}_0 \cdot \mathbf{N} = -\omega_0; & \text{ on } \partial_\omega \mathcal{B}_0, \end{split}$$

where \mathbf{D}_0 the electric displacement, ρ_0 the electric volumetric charge and ω_0 the boundary charge.

Introduction	
000000000	

Topology optimization problem

Numerical examples

Gauss and Faraday' laws

• Gauss's law:

$$\begin{split} & \operatorname{div} \mathbf{D}_0 - \rho_0 = 0; & \text{ in } \mathcal{B}_0; \\ & \mathbf{D}_0 \cdot \mathbf{N} = -\omega_0; & \text{ on } \partial_\omega \mathcal{B}_0, \end{split}$$

where \mathbf{D}_0 the electric displacement, ρ_0 the electric volumetric charge and ω_0 the boundary charge.

• Faraday's law:

$$\begin{aligned} \mathbf{E}_0 &= -\nabla_0 \varphi; & \text{ in } \mathcal{B}_0; \\ \varphi &= \bar{\varphi}; & \text{ on } \partial_{\varphi} \mathcal{B}_0, \end{aligned}$$

where \mathbf{E}_0 the electric field and φ the scalar potential.

Introduction 000000000	Topology optimization problem	Numerical examples	Conclusions O
Constitutive	equations		

In order to close the equilibrium state equations we use the **Helmhotz functional**:

 $\Psi = \Psi(\mathbf{X}, \mathbf{F}, \mathbf{E}_0),$

representing an energy functional per undeformed volume.

Introduction	
000000000	

Topology optimization problem

Numerical examples

Conclusions O

Constitutive equations

In order to close the equilibrium state equations we use the **Helmhotz functional**:

$$\Psi = \Psi(\mathbf{X}, \mathbf{F}, \mathbf{E}_0),$$

representing an energy functional per undeformed volume.

Then

$$\left\{ \begin{array}{l} \textbf{P} = \partial_{\textbf{F}} \Psi(\textbf{X},\textbf{F},\textbf{E}_0), \\ \textbf{D}_0 = -\partial_{\textbf{E}_0} \Psi(\textbf{X},\textbf{F},\textbf{E}_0) \end{array} \right.$$

which together with the previous mechanical and electrical equilibria gives rise to a coupled system of *fully* nonlinear PDE's

Introduction	
000000000	

Topology optimization problem

Numerical examples

Conclusions O

Constitutive equations

In order to close the equilibrium state equations we use the **Helmhotz functional**:

$$\Psi = \Psi(\mathbf{X}, \mathbf{F}, \mathbf{E}_0),$$

representing an energy functional per undeformed volume.

Then

$$\left\{ \begin{array}{l} \textbf{P} = \partial_{\textbf{F}} \Psi(\textbf{X},\textbf{F},\textbf{E}_0), \\ \textbf{D}_0 = -\partial_{\textbf{E}_0} \Psi(\textbf{X},\textbf{F},\textbf{E}_0) \end{array} \right. \label{eq:powerself}$$

which together with the previous mechanical and electrical equilibria gives rise to a coupled system of *fully* nonlinear PDE's

FE numerical approximation of the continuum will be approximated by a a Newton-Raphson algorithm.

Introduction 000000000	Topology optimization problem	Numerical examples	Conclusions O
Dielectric ela	stomer		

Example of a constitutive model for isotropic dielectric elastomers in finite strain electromechanics:

$$\Psi(\mathbf{X},\mathbf{F},\mathbf{E}_0) = \Psi_m(\mathbf{X},\mathbf{F}) + \Psi_{em}(\mathbf{X},\mathbf{F},\mathbf{E}_0).$$

with,

• Mechanical (Mooney-Rivlin):

$$\Psi_{m}(\mathbf{F}) = \Psi_{m}^{MR}(\mathbf{F}) := \frac{\mu_{1}}{2} II_{\mathbf{F}} + \frac{\mu_{2}}{2} II_{\mathbf{H}} + f(J);$$

$$f(J) = -(\mu_{1} + 2\mu_{2}) \ln(J) + \frac{\lambda}{2} (J-1)^{2}, \quad II_{\mathbf{A}} = \mathbf{A} \cdot \mathbf{A}$$

• Electricalmechanical (isotropic ideal dielectric):

$$\Psi_{em}(\mathbf{F}, \mathbf{E}_0) = -\frac{\varepsilon_r \varepsilon_0}{2J} I I_{\mathbf{H}\mathbf{E}_0} = -\frac{\varepsilon_r \varepsilon_0}{2J} \left(\mathbf{H}\mathbf{E}_0 \cdot \mathbf{H}\mathbf{E}_0 \right),$$

Introduction 000000000	Topology optimization problem	Numerical examples	Conclusions O
Dielectric ela	astomer		

• E Young's modulus and ν Poisson's ratio:

$$\mu_1 + \mu_2 = \frac{E}{2(1+\nu)}; \qquad \lambda - 2\mu_2 = \frac{E\nu}{(1+\nu)(1-2\nu)}$$

- $\varepsilon_0 = 8.854 \times 10^{-12} \, \mathrm{Fm}^{-1}$ electric permitivity of vaccum
- ε_r relative electric permitivity

Introduction 00000000	Topology optimization problem	Numerical examples	Conclusions 0
Piezoelectric	polymer		

• Mechanical:

$$\begin{split} \Psi_m(\mathbf{F}) &= \Psi_m^{MR}(\mathbf{F}) + \frac{\mu_3}{2} \left(II_{\mathbf{FV}} + II_{\mathbf{HV}} \right) \\ &+ \frac{\mu_4}{4} \left(II_{\mathbf{FV}}^2 + II_{\mathbf{HV}}^2 \right) + g(J); \\ g(J) &= - \left(\mu_3 + \mu_4 \right) \ln(J) + \frac{\lambda}{2} \left(J - 1 \right)^2, \end{split}$$

with \boldsymbol{V} the polarization direction;

• Electromechanical:

$$\begin{split} \Psi_{em}(\mathbf{X},\mathbf{F},\mathbf{E}_0) &= -\frac{\varepsilon_1}{2} I I_{\mathbf{H}\mathbf{E}_0} - \frac{\varepsilon_2}{2} \left(\mathbf{E}_0 \cdot \mathbf{V}\right)^2 \\ &- e_1 \mathbf{V} \cdot \widetilde{\mathbf{E}} \mathbf{E}_0 - e_2 \left(\mathbf{E}_0 \cdot \mathbf{V}\right) \operatorname{tr}(\widetilde{\mathbf{E}}) \\ &- e_3 \left(\mathbf{E}_0 \cdot \mathbf{V}\right) \left(\mathbf{N} \cdot \widetilde{\mathbf{E}} \mathbf{V}\right), \end{split}$$

Introduction
000000000

Topology optimization problem •000 Numerical examples

Conclusions 0

Problem

Minimize
$$\mathcal{J}(\Phi_{\chi}) = -\int_{\partial \mathcal{B}_0} \mathbf{I}_0 \cdot \Phi_{\chi} \, dA$$
,

subject to:

 The displacement Φ is obtain from the solution of the nonlinear electromechanics system with constitutive law given by the Helmholtz energy functional

$$\Psi(\mathbf{X}, \mathbf{F}, \mathbf{E}_0) = \Psi^{\chi}(\chi(\mathbf{X}), \mathbf{F}, \mathbf{E}_0),$$

where $\chi(\mathbf{X}) \in \{0, 1\}$ is the *discrete design* differentiating solid from void regions;

• Volumen constraint:
$$\int_{\Omega_0} \chi({f X}) \, dV \leq c |\Omega_0|.$$

 I_0 unitary fixed vector in the direction where the displacement is maximized and defined on $\partial \mathcal{B}_0.$

Introduction	Topology optimization problem	Numerical examples	Conclusions
00000000	0●00		O
SIMP approa	ch		

• From discrete (*binary*) to density approach: $\chi \rightarrow \rho$, $\rho \in \{0, 1\}$

Introduction	Topology optimization problem	Numerical examples	Conclusions
00000000	0000		O
SIMP approx	ach		

- From discrete (*binary*) to density approach: $\chi \rightarrow \rho$, $\rho \in \{0, 1\}$
- Density filtering:

$$\tilde{\rho}(\mathbf{X}) = (\rho * \Delta)(\mathbf{X}) = \int_{\mathcal{B}_0} \rho(\mathbf{X}') \Delta(\|\mathbf{X} - \mathbf{X}') \, dV,$$

with Δ the cone convolution kernel

Introduction 00000000	Topology optimization problem	Numerical examples	Conclusions O
SIMP appr	oach		

- From discrete (*binary*) to density approach: $\chi \rightarrow \rho$, $\rho \in \{0,1\}$
- Density filtering:

$$\tilde{\rho}(\mathbf{X}) = (\rho * \Delta)(\mathbf{X}) = \int_{\mathcal{B}_0} \rho(\mathbf{X}') \Delta(\|\mathbf{X} - \mathbf{X}') \, dV,$$

with Δ the cone convolution kernel

• Density projection: we define the physical density field

$$\hat{
ho}(\mathbf{X}) = rac{ anh(eta\eta) + anh(eta(ilde{
ho}(\mathbf{X}) - \eta))}{ anh(eta\eta) + anh(eta(1 - \eta))},$$

Introduction 00000000	Topology optimization problem	Numerical examples	Conclusions O
SIMP approa	ich		

- From discrete (*binary*) to density approach: $\chi \rightarrow \rho$, $\rho \in \{0,1\}$
- Density filtering:

$$\tilde{
ho}(\mathbf{X}) = (
ho * \Delta)(\mathbf{X}) = \int_{\mathcal{B}_0}
ho(\mathbf{X}') \Delta(\|\mathbf{X} - \mathbf{X}') \, dV,$$

with Δ the cone convolution kernel

• Density projection: we define the physical density field

$$\hat{
ho}(\mathbf{X}) = rac{ anh(eta\eta) + anh(eta(ilde{
ho}(\mathbf{X}) - \eta))}{ anh(eta\eta) + anh(eta(1 - \eta))},$$

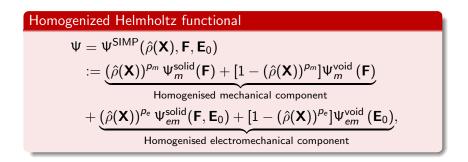
• Interpolated strain energy density: $\Psi(\mathbf{X}, \mathbf{F}, \mathbf{E}_0) = \Psi^{SIMP}(\hat{\rho}(\mathbf{X}), \mathbf{F}, \mathbf{E}_0)$

Topology optimization problem

Numerical examples

Conclusions O

Energy interpolation scheme



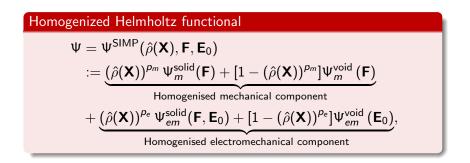
 p_m and p_e are, respectively, the mechanical and electromechanical penalisation exponents

Topology optimization problem

Numerical examples

Conclusions O

Energy interpolation scheme



 p_m and p_e are, respectively, the mechanical and electromechanical penalisation exponents

STUDYING THE INFLUENCE OF THESE PARAMETERS IN THE DESIGN PROCESS IS OF MAJOR IMPORTANCE

Topology optimization problem $000 \bullet$

Numerical examples

Conclusions 0

Energy interpolation scheme: void modeling

Void energy

• Mechanical:

$$\Psi^{\mathrm{void}}_m(\mathbf{F}) := \frac{\alpha}{2}(\mathbf{F} - \mathbf{I}) : \left. \mathcal{C} \right|_0 : (\mathbf{F} - \mathbf{I}),$$

with $\mathcal{C}|_0$ solid elasticity tensor at the origin $(\mathbf{F} = \mathbf{I})$

Topology optimization problem $000 \bullet$

Numerical examples

Conclusions 0

Energy interpolation scheme: void modeling

Void energy

• Mechanical:

$$\Psi_m^{\text{void}}(\mathbf{F}) := \frac{\alpha}{2}(\mathbf{F} - \mathbf{I}) : \left. \mathcal{C} \right|_0 : (\mathbf{F} - \mathbf{I}),$$

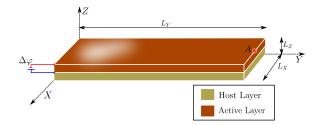
with $\left. \mathcal{C} \right|_0$ solid elasticity tensor at the origin (F = I)

Electromechanical:

$$\Psi_{em}^{\mathsf{void}}(\mathsf{E}_0) = \left. \left(-\frac{\varepsilon_0}{2J} I I_{\mathsf{HE}_0} \right) \right|_{\mathsf{H}=\mathsf{I},J=1} = -\frac{\varepsilon_0}{2} I I_{\mathsf{E}_0}$$

Introduction	Topology optimization problem	Numerical examples	Conclusions
00000000	0000	00000	0

Example 1: dielectric elastomer actuator



Example 1. Unimorph dielectric elastomer-based device, completely fixed at Y = 0, and subjected to $\Delta \varphi = 8 \times 10^3$ V/m. Symmetric boundary conditions have been applied at $X_{med} = (\max(X) + \min(X))/2$, leading to a discretisation of $180 \times 30 \times 2$ Q2 (tri-quadratic) Finite Elements, yielding a total of $(180 \times 2 + 1) \times (30 \times 2 + 1) \times (2 \times 2 + 1) \times 3 = 330315$ dofs for ϕ and $(180 \times 2 + 1) \times (30 \times 2 + 1) \times (2 \times 2 + 1) = 110105$ for φ . Objective function aiming at maximising Z direction of

displacement at point A.

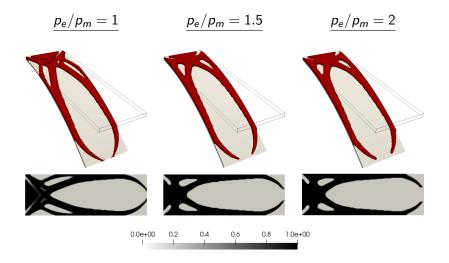
Topology optimization problem 0000

Numerical examples

Conclusions 0

Example 1: dielectric elastomer actuator

 $p_m=3 \\$

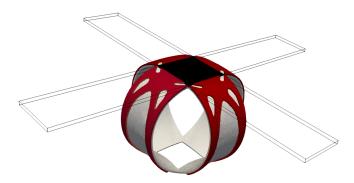


Topology optimization problem

Numerical examples

Conclusions 0

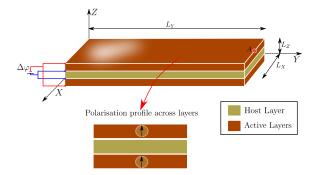
Dielectric-elastomer base gripper



Dielectric elastomer-based gripper. Deformed configuration for voltage gradiens $\Delta \varphi$ of $(\frac{2}{3} \times 10^3) \times \{24\}$ V/m. Results obtained with the optimised design corresponding with $p_m = 3$, $p_e/p_m = 2$ using **continuation strategy**

Introduction	Topology optimization problem	Numerical examples	Conclusions
00000000	0000	000000	0

Example 2: piezoelectric polymer actuator



Bimorph piezoelectric polymer-based device, completely fixed at Y = 0, and subjected to $\Delta \varphi = 10^4 \text{ V/m.}$ Symmetric boundary conditions have been applied at $X_{med} = (\max(X) + \min(X))/2$. Objective function aiming at maximising Z direction of displacement at point **A**. Polarisation profile across the thickness (vector **V** in equilibrium equations).

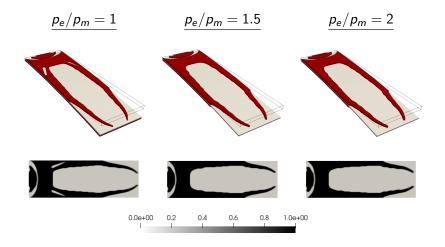
Topology optimization problem 0000

Numerical examples

Conclusions 0

Example 2: piezoelectric polymer actuator

 $p_m=5\,$

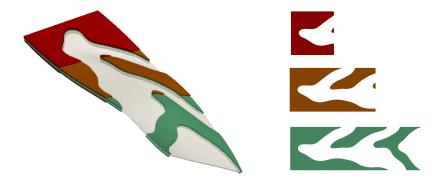


Topology optimization problem

Numerical examples

Conclusions 0

Example 3: multilayered torsional piezoelectric actuator



Design of the multilayered torsional piezoelectric actuator for $p_m = 3$ and $p_e = 6$,

Introduction 000000000	Topology optimization problem	Numerical examples	Conclusions •
Conclusions			

- Density-based TO in the context of nonlinear electromechanics, focusing on electro-active materials, capable of undergoing large electrically induced deformations
- Energy interpolation scheme for void and solid regions that works out preventing numerical instabilities associated to low and intermediate densities
- In view of numerical simulations, $p_e > p_m$ is strongly adviced. This is in opposition with linear piezoelectricity, where non-penalisation of electromechanical energy is needed