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Topology optimization for liquid-cooled heat sink
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Back Ground

Motivations & highlights

 Fluid-thermal-structural design
Not only for the load bearing ability, 
but also to avoid impractical structure 
(floating solid).

 Choice of Darcy number for 3D case
The Darcy number which can be well 
used in fluid topology optimization may 
cause a problem in 3D fluid-thermal 
design. 

Solid

Fluid

Floating Solid
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Assumptions:  
 Laminar flow
 Newtonian fluid
 Ignoring viscous dissipation

Boundary conditions:  
 Constant velocity and temperature 

of fluid in inlets
 Zero fluid pressure in outlets
 Uniform pressure on the surface

Basic methods



8

Governing equations:

N-S equations
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SIMP interpolation of material properties

Pseudo density:              solid                     fluid

Inverse permeability:

Heat conductivity:

Elastic modulus: 
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Optimization model

 Sensitivities are calculated by solving continuous adjoint equations.
 Performed with OpenFOAM
 Code has been uploaded to github.com/MTopOpt/MTO
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Model

Fluid-thermal design

x

y

z
o

Quarter-symmetric model
Materials: water and aluminum
Uniform heat source in the domain

J J

Power dissipation

Volume

V V

4 times of straight channel

20% of total volume
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max 2Dal

 

610Da 510Da 

Fluid-thermal design

Darcy number

710Da 

With higher values of Da, wall-like fluid regions are observed.

Viscosity

Characteristic length

Inverse permeability in solid
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Fluid-thermal design

Wall-like fluid regions divide 
the domain into subdomains

Each subdomain has uniform 
temperature with low gradient

 Low heat conduction

510Da 

610Da 

710Da 
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Define

Heat conduction

Heat convection

Fluid-thermal design
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Fluid-thermal design
510Da 

610Da 

710Da 
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Fluid-thermal design

Region of |u|>|uinlet|/100

Pseudo density field Low velocity convection conduction

In the thermal-fluid topology optimization, we
expect a better estimation for the than
the old one which is used in pure fluid problem.
Thermal properties must be considered.

In the rest tests, we always set Da=10-7

The wall-like fluid regions are meant to
absorb the fluid with heat from solid region.
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Model

Fluid-thermal-structural design
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Total force F=30N

Deformation constraint

Elastic equation with thermal expansion

   

   3 2

=

T ref

T

T T  

       

    I

D D D I



20

Fluid-thermal-structural design
Without considering thermal expansion

-161.5*10S 

-1610S 
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Fluid-thermal-structural design

Without considering thermal expansion

Like 2D extruded design, the cross sections of channels are vertical
(parallel to the direction of external force), which provide a high stiffness.
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Fluid-thermal-structural design

Considering thermal expansion

-1710S 

-185*10S 
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Fluid-thermal-structural design

Displacements of expansion and load are opposite.

Horizontal and isolated fluid regions reduce the stiffness so that
the displacements can be neutralized.

Considering thermal expansion
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Conclusions

The fluid-thermal-structural topology optimizations are
performed where the primal and analytical adjoint
PDEs are solved by OpenFOAM. The structural features
of the results in fluid-thermal design, fluid-thermal-
structural without and with thermal expansions are
discussed.
The approach can be further extended to avoid floating
solid result (by considering the weight) and solve the
problem of thermal stress.



25

Conclusions

In the fluid-thermal topology optimization, the
velocity should be punished harder than pure fluid
problem, so that the effect of the heat convection can
be eliminated.
A more appropriate formula of estimating the
for 3D fluid-thermal problem is expected, which
should be able to eliminate thermal convection in solid,
therefore more properties (density, heat conductivity,
heat capacity and characteristic velocity) should be
considered.




