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Figure: Settings of the heat exchanger
topology optimization problem.

I Navier-Stokes flows in the hot
and cold phases ⌦f ,hot and
⌦f ,cold .

I Thermal convection in the fluid
phase ⌦f = ⌦f ,hot [ ⌦f ,cold .

I Thermal di↵usion in ⌦s and ⌦f

with conductivities ks >> kf .

I Non-penetration constraint:

d(⌦f ,hot,⌦f ,cold) > dmin.

I In 3D!
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The boundary variation method of Hadamard

min
�

J(�)
�f

�s

�

� ��

�✓ = (I + ✓)�, with ✓ 2 W 1,1
0 (D,Rd), ||✓||W 1,1(Rd ,Rd )< 1.

J(�✓) = J(�) +
dJ

d✓
(✓) + o(✓), with

|o(✓)|
||✓||W 1,1(D,Rd )

✓!0���! 0.
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Coupled physics system

⌦s

⌦f

D
⌦f

I Incompressible Navier-Stokes system for the velocity and pressure (v , p) in ⌦f

�div(�f (v , p)) + ⇢rv v = ff in ⌦f

I Convection-di↵usion for the temperature T in ⌦f and ⌦s :

�div(kfrTf ) + ⇢v ·rTf = Qf in ⌦f

�div(ksrTs) = Qs in ⌦s

I Boundary conditions on � = @⌦f :8
><

>:

Tf = Ts on �

kfrTf · n = ksrTs · n on �

v = 0 on �.
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Shape derivatives

Proposition

Let J(�,T , v , p) an arbitrary cost function. If J has continuous partial derivatives, then
� 7! J(�, u(�),T (�), v(�), p(�)) is shape di↵erentiable and the shape derivative reads1:

d

d✓

h
J(�✓ , v(�✓), p(�✓),T (�✓), u(�✓))

i
(✓)

=
@J

@✓
(✓) +

Z

�
(ff · w � �f (v , p) : rw + n · �f (w , q)rv · n + n · �f (v , p)rw · n)(✓ · n)ds

+

Z

�

✓
ksrTs ·rSs � kf rTf ·rSf + Qf Sf � QsSs � 2ks

@Ts

@n
@Ss
@n

+ 2kf
@Tf

@n
@Sf
@n

◆
(✓ · n)ds

1
Feppon et al., Shape optimization of a coupled thermal fluid–structure problem in a

level set mesh evolution framework (2019)



Body-fitted meshes

We rely on body fitted meshes2,3.

I Fluid-Solid interface � exactly
captured, no need of physics
interpolation because no
porous regions.

I Remeshing with Mmg enabling
mesh size control.

2
Allaire, Dapogny, and Frey, Shape optimization with a level set based mesh evolution

method (2014)
3
Feppon et al., Shape optimization of a coupled thermal fluid–structure problem in a

level set mesh evolution framework (2019)
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Null space optimization algorithm

I Nonlinear constrained optimization on
manifolds with a moderate number of
constraints

I Generalization of the unconstrained
gradient flow: no hard tuning of
parameters

I Adapted to the infinite dimensional
setting of the method of Hadamard

Open source implementation4:
https://gitlab.com/florian.feppon/null-space-optimizer

pip install nullspace optimizer

4
Feppon, Allaire, and Dapogny, Null space gradient flows for constrained optimization

with applications to shape optimization (2019)

https://gitlab.com/florian.feppon/null-space-optimizer
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Parallel computing

I Use of Domain Decomposition and adapted preconditioners for solving
finite element problems : all FEM related operations are achieved in
parallel5.

I We solve fluid FEM problems on meshes up to 4.8 millions of
Tetrahedra with 30 CPUs.

I Mesh adaptation and Isosurface discretization is still sequential. A
future release of (Par)Mmg will allow to do it in parallel.

5
Feppon et al., Topology optimization of thermal fluid–structure systems using

body-fitted meshes and parallel computing (2020)
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Non mixing constraint
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Figure: Settings of the heat exchanger topology
optimization problem .

Non-penetration constraint:

d(⌦f ,hot,⌦f ,cold) > dmin.

We enforce it by imposing

8x 2 ⌦f ,cold, d⌦f ,hot(x) > dmin,

where d⌦f ,hot is the signed
distance function to the
domain ⌦f ,hot.
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d(⌦f ,hot,⌦f ,cold) > dmin.

We enforce it by imposing
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The signed distance function

The signed distance function d⌦ to the domain ⌦ ⇢ D is defined by:

8x 2 D, d⌦(x) =

8
><

>:

� min
y2@⌦

||y � x || if x 2 ⌦,

min
y2@⌦

||y � x || if x 2 D\⌦.



2D heat exchangers

dmin �

D

Heat exchanger problem with limited pressure loss and non-mixing constraint:

min
�

J(⌦f ) = �
 Z

⌦f ,cold

⇢cpv ·rTdx �
Z

⌦f ,hot

⇢cpv ·rTdx

!

s.c .

8
><

>:

DP(⌦f ) =

Z

@⌦D
f

pds �
Z

@⌦N
f

pds  DP0

Qhot$cold(⌦f ) > dmin.



2D heat exchangers

dmin �

D

Heat exchanger problem with limited pressure loss and non-mixing constraint:

min
�

J(⌦f ) = �
 Z

⌦f ,cold

⇢cpv ·rTdx �
Z

⌦f ,hot

⇢cpv ·rTdx

!

s.c .

8
>><

>>:

DP(⌦f ) =

Z

@⌦D
f

pds �
Z

@⌦N
f

pds  DP0

Qhot$cold(⌦f ) =

Z

D
j(d⌦f ,hot )dx > dmin.



Shape derivatives of geometric constraints

For instance

Qhot$cold(⌦f ) :=

 Z

⌦f ,cold

1

|d⌦f ,hot |p
dx

!� 1
p

'

�����

�����
1

d⌦f ,hot

�����

�����

�1

L1(⌦f ,cold )

.

This reduces to the setting of computing the shape derivative of some
penalty functional Qhot$cold(⌦f ) with:

Qhot$cold(⌦f ) :=

Z

D
j(d⌦f ,hot )dx .
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Shape derivatives of geometric constraints

The shape derivative of Qhot$cold(⌦f ) is given by6:

Q 0
hot$cold(⌦)(✓) =

Z

@⌦f ,hot

u(y) ✓ · n dy

with u(y) = �
Z

z2ray(y)
j 0(d⌦f ,hot (z))

Y

1in�1

(1 + i (y)d⌦f ,hot (z))dz , 8y 2 @⌦.

The computation of u(y) requires a priori
integration along the normal rays and the
computation of curvatures i (y).

6
Allaire, Jouve, and Michailidis, Thickness control in structural optimization via a level

set method (2016)
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Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays7:

Proposition

Let û 2 V! be the solution to the variational problem

8v 2 V!,

Z

@⌦f ,hot

ûvds +

Z

D
!(rd⌦f ,hot ·rû)(rd⌦f ,hot ·rv)dx = �

Z

D
j 0(d⌦f ,hot )vdx .

Then u(y) = û(y) for any y 2 @⌦f ,hot .

I This variational problem can easily be solved with FEM in 2D and 3D

I This allows to handle conveniently geometric constraints (e.g. maximum
thickness, minum distance, etc. . . ) in 2D and 3D level set based topology
optimization.

7
Feppon, Allaire, and Dapogny, A variational formulation for computing shape

derivatives of geometric constraints along rays (2019)



Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays7:

Proposition
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2D Heat Exchangers with non-mixing constraint

(a) Initial temperature (b) Final temperature.

(c) Intermediate iterations 0, 8, 20, 50, 88 et 200.



3D fluid-to-fluid heat exchanger

x

z
y

d(⌦f ,hot,⌦f ,cold) > dmin

Thot

Tcold

D

⌦f ,hot

⌦f ,cold

Figure: Schematic of the 3D setting.



3D fluid-to-fluid heat exchanger

Figure: Initial distribution of fluid considered for the 3D heat exchanger test case.



3D fluid-to-fluid heat exchanger



3D fluid-to-fluid heat exchanger



3D fluid-to-fluid heat exchanger

Figure: Intermediate iterations.



3D fluid-to-fluid heat exchanger

(a) Cold phase (b) Hot phase

Figure: Separate plots of the topologically optimized cold and hot fluid phases in the
configuration dmin = 0.04.



3D fluid-to-fluid heat exchanger

Figure: Cut of the resulting solid domain



3D fluid-to-fluid heat exchanger

Many thanks for your attention!


