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Coupled physics system
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Coupled physics system

D

Qs
w
D

> Incompressible Navier-Stokes system for the velocity and pressure (v, p) in Qf

—div(or(v, p)) + pVvv = fr in Qf

» Convection-diffusion for the temperature T in € and €s:
—div(keVTe)+pv-VTr=Qf inQf
—div(ksVTs) = Qs in
» Boundary conditions on ' = 9Q:
Te=Tsonl
kiVTs-n=kNVTs-nonTl

v=0onT.



Shape derivatives

Proposition

Let J(T', T, v, p) an arbitrary cost function. If J has continuous partial derivatives, then
[ J(T,u(T), T(F), v(T), p(T)) is shape differentiable and the shape derivative reads':

d
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6) + /r(ff -w—o(v,p): Vw+n-or(w,q)Vv-n+n-o¢(v,p)Vw - n)(0 - n)ds
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'Feppon et al., Shape optimization of a coupled thermal fluid—structure problem in a
level set mesh evolution framework (2019)
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Null space optimization algorithm
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» Nonlinear constrained optimization on 1.0
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Open source implementation®:
https://gitlab.com/florian.feppon/null-space-optimizer
pip install nullspace_optimizer

*Feppon, Allaire, and Dapogny, Null space gradient flows for constrained optimization
with applications to shape optimization (2019)
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Parallel computing

» Use of Domain Decomposition and adapted preconditioners for solving
finite element problems : all FEM related operations are achieved in
parallel®.

» We solve fluid FEM problems on meshes up to 4.8 millions of
Tetrahedra with 30 CPUs.

» Mesh adaptation and Isosurface discretization is still sequential. A
future release of (Par)Mmg will allow to do it in parallel.

®Feppon et al., Topology optimization of thermal fluid—structure systems using
body-fitted meshes and parallel computing (2020)
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Non-penetration constraint:
d(€2f hot 2 cold) = dmin-

We enforce it by imposing

Vx € Qf colds day oy (X) = dimin,

where dq, , . is the signed
distance function to the
domain Qf pot.



The signed distance function

The signed distance function dg to the domain Q C D is defined by:

—min |ly — x|| if x€Q,
Vx € D, do(x) = yeon

in|ly — if x € D\Q.
yrgggzlly x| if x € D\




2D heat exchangers
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Heat exchanger problem with limited pressure loss and non-mixing constraint:
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2D heat exchangers

D

Heat exchanger problem with limited pressure loss and non-mixing constraint:

min J(Qf) =— / pcpv - VTdx —/ pcpv - VTdx
r Qf cold Qf  hot

DP(Qf) = /aQD pds — /89’\’ pds < DPg
f f

Qhotescold (2f) = /J'(de_m)dX > dmin-
D

S.C.
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Shape derivatives of geometric constraints

For instance

BN
Qn 1d(Qf) = / —dx ~
ot<+co U ot |de7hot |P

This reduces to the setting of computing the shape derivative of some
penalty functional Qpotescoid(2r) with:

-1
1

de,hot

Loo (Qf,cold)

Qhotescold () = /D.j(dQF,hot)dX‘
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Shape derivatives of geometric constraints

It turns out that it is possible to compute u without integrating along the rays’:
Proposition

Let 4 € V,, be the solution to the variational problem

Vv € V,, / L?vds—l—/ w(Vda, .. - V)(Vda, ., - Vv)dx = —/j'(dgfm)vdx.
89{7)701 D D

Then u(y) = O(y) for any y € 0 ot

» This variational problem can easily be solved with FEM in 2D and 3D

> This allows to handle conveniently geometric constraints (e.g. maximum
thickness, minum distance, etc...) in 2D and 3D level set based topology
optimization.

"Feppon, Allaire, and Dapogny, A variational formulation for computing shape
derivatives of geometric constraints along rays (2019)
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2D Heat Exchangers with non-mixing constraint

100.0 100.0

-0.0

(a) Initial temperature (b) Final temperature.

) Intermediate iterations 0, 8, 20, 50, 88 et 200.




3D fluid-to-fluid heat exchanger

Tcold

Figure: Schematic of the 3D setting.



3D fluid-to-fluid heat exchanger

Figure: Initial distribution of fluid considered for the 3D heat exchanger test case.
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3D fluid-to-fluid heat exchanger

Figure: Intermediate iterations.



3D fluid-to-fluid heat exchanger

(a) Cold phase (b) Hot phase

Figure: Separate plots of the topologically optimized cold and hot fluid phases in the
configuration dpni, = 0.04.



3D fluid-to-fluid heat exchanger

Figure: Cut of the resulting solid domain



3D fluid-to-fluid heat exchanger

Many thanks for your attention!




