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Metamaterial and Multiscale Metamaterial System Design

• Metamaterial: Derive properties from the microstructures rather than the constituents

• Achieve heterogeneous property distribution by assembling different microstructures 

Topology Property

Macroscale Microscale Multiscale System

◼ Multiscale System Design
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◼ Different Microstructures and Their Elasticity Surfaces

Wang, L. et al., 2020. J. Mech. Design, 143.



Research Questions and Proposed Data-Driven Design Framework

Integrated Data-driven Design Framework 

Metamaterial Database Machine Learning Models Design Algorithms

• How to construct a large database 

with diverse shapes and properties?

• What mechanics knowledge can 

be extracted from the database? 

• How to do scalable multiscale design 

with well-connected unit cells?

Database Construction Mechanistic-based Learning Data-driven Metamaterial Design
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Topology Property

Macroscale Optimization Microscale Optimization Multiscale System Design



Sequential Generation of Metamaterial Database

◼ Shape Perturbation

◼ Stochastic Perturbation◼ Initial Database Generation ◼ Microstructure Selection

Iteratively populate
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• Perform SIMP for uniformly sampled stiffness targets to generate initial database

• Populate the database  by sequentially select and perturbate critical structures
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Large and Diverse Metamaterial Database

https://ideal.mech.northwestern.edu/research/software/

• Orthotropic microstructures with four independent entries of stiffness matrix

• A diverse metamaterial database with ~250,000 precomputed microstructures

Data available at :
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◼ Property Space of the Metamaterial Database
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Variational Autoencoder (VAE) for Mechanistic Learning

• A two-way mapping between microstructures and low-dimensional latent vectors

• Unravel the interplay between property and shape spaces

◼ Variational Autoencoder (VAE) Architecture

Shape SpaceProperty Space

Pixelated MatrixProperty Space

?
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Mechanistic-based Learning in Latent Space

• Meaningful mathematical structure and rich physical information in the latent space

• Latent space as a “control panel” for metamaterial

◼ Conceptual Map◼ Meaningful Latent Axis ◼ Distance Metric
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VAE-assisted Inverse Design

◼ Semantic Arrow ◼ Metamaterial Family Generation◼ Diverse Candidate Set 
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• Easy tuning of properties and geometries by simple vector arithmetic in latent space

• Diverse candidate set selection & generation for target properties

• Efficient generation of metamaterial families with target gradations of properties

Graph Search Diverse Families

Property gradation before/after interpolation
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VAE-assisted Multiscale Metamaterial Systems Design

• A two-stage framework for multiscale system design to achieve the prescribed distortion, 
ensuring the compatibility between adjacent unit cells

◼ Design Framework

◼ Problem Setting ◼ Property Constraint ◼ Optimized Spatially-varying Property Distribution
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Full Structure Assembling

• Change the full structure assembling into a graph energy minimization problem

• Efficiently solved by dual-decomposition method

Trial Displacement 

Nodal Energy ሻ𝜃𝑖(𝑙𝑖 Edge Energy 𝜃𝑖𝑗 𝑙𝑖 , 𝑙𝑗

Target

Candidatesሻ𝜃𝑖(𝑙𝑖

Incompatible

Markov Random Field Model
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Full Structure Assembling

• Change the full structure assembling into a graph energy minimization problem

• Efficiently solved by dual-decomposition method

Trial Displacement 

Nodal Energy ሻ𝜃𝑖(𝑙𝑖 Edge Energy 𝜃𝑖𝑗 𝑙𝑖 , 𝑙𝑗
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Dual-Decomposition Method

Wang, L. et al., 2020. Struct. Multidisc. O.



Aperiodic Design with Prescribed Distortion

• Spatially-varying property distribution to achieve prescribed distortion behavior
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Summary of Contributions

❖Efficient construction of a large database with diverse microstructures and properties

❖Insights on the mathematical structure and mechanistic information of latent space

❖Easy tuning of properties and geometries by simple vector arithmetic in latent space

❖Multiscale design with heterogeneous properties and well-connected aperiodic

microstructures
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Challenges and Future Opportunities of DATO
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❖Design with complicated mechanism or material law

- Pattern-switching design, acoustic/ phononic/ photonic design, induced buckling…

- Structure with manufacturing-induced heterogeneity, e.g. AM

❖Design with multiple scales/components

- Nonlinearity, aperiodicity, interaction between components

❖Physics-guided/“white-box”machine learning method

- Bring physics into ML

- Better generalizability, reduce data requirement, higher interpretability

❖Standard dataset & benchmark problem
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