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Metamaterial and Multiscale Metamaterial System Design

 Metamaterial: Derive properties from the microstructures rather than the constituents
* Achieve heterogeneous property distribution by assembling different microstructures
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Wang, L. et al., 2020. J. Mech. Design, 143.
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Research Questions and Proposed Data-Driven Desigh Framework
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How to construct a large database * What mechanics knowledge can

with diverse shapes and properties? be extracted from the database?
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Data-driven Metamaterial Design

* How to do scalable multiscale design
with well-connected unit cells?



Sequential Generation of Metamaterial Database

* Perform SIMP for uniformly sampled stiffness targets to generate initial database
 Populate the database by sequentially select and perturbate critical structures
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Large and Diverse Metamaterial Database

e Orthotropic microstructures with four independent entries of stiffness matrix
 Adiverse metamaterial database with ~250,000 precomputed microstructures
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Data available at : https://ideal.mech.northwestern.edu/research/software/ .



Variational Autoencoder (VAE) for Mechanistic Learning

* A two-way mapping between microstructures and low-dimensional latent vectors
* Unravel the interplay between property and shape spaces
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 Meaningful mathematical structure and rich physical information in the latent space
e Latent space as a “control panel” for metamaterial

Mechanistic-based Learning in Latent Space
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VAE-assisted Inverse Design

e Easy tuning of properties and geometries by simple vector arithmetic in latent space

e Diverse candidate set selection & generation for target properties

* Efficient generation of metamaterial families with target gradations of properties
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* A two-stage framework for multiscale system design to achieve the prescribed distortion,

VAE-assisted Multiscale Metamaterial Systems Design
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Full Structure Assembling

* Change the full structure assembling into a graph energy minimization problem
e Efficiently solved by dual-decomposition method
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Full Structure Assembling

* Change the full structure assembling into a graph energy minimization problem
e Efficiently solved by dual-decomposition method

Dual-Decomposition Method
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Aperiodic Design with Prescribed Distortion

e Spatially-varying property distribution to achieve prescribed distortion behavior
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Summary of Contributions

» Efficient construction of a large database with diverse microstructures and properties
**Insights on the mathematical structure and mechanistic information of latent space
»* Easy tuning of properties and geometries by simple vector arithmetic in latent space

s Multiscale design with heterogeneous properties and well-connected aperiodic
microstructures
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Challenges and Future Opportunities of DATO

¢ Design with complicated mechanism or material law
- Pattern-switching design, acoustic/ phononic/ photonic design, induced buckling...

- Structure with manufacturing-induced heterogeneity, e.g. AM

¢ Design with multiple scales/components

- Nonlinearity, aperiodicity, interaction between components

* Physics-guided/ “white-box” machine learning method
- Bring physics into ML
- Better generalizability, reduce data requirement, higher interpretability

*»*Standard dataset & benchmark problem
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