

# Efficient and easily accessible Matlab codes for topology optimization

Federico Ferrari

Department of Civil and Systems Engineering, Johns Hopkins University

Acknowledgements: Ole Sigmund, Department of Mechanical Engineering, Technical University of Denmark Jamie Guest, Department of Civil and Systems Engineering, Johns Hopkins University



## Motivation of the work



0.558

0.206

0.157

 $600 \times 200$ 

0.442

0.059

0.264

0.224

 $300 \times 100$ 

(a)  $r_{\min} = 4, 8, 16$ , respectively



 $t_A$ : matrix assembly

 $t_{OC}$ : OC update

 $t_P$ : setup operations



#### Goals

• Cut all the times other than  $t_S$ , making the code highly efficient for medium-size problems  $(10^5 - 10^6 \text{ elements});$ 

0.8

0.0 Jime % Chn Lime % 0.4

0.2

 $0.364 \\ 0.37$ 

. 0

150 × 50

Keep the readability and flexibility of top88

2 Department of Civil and Systems Engineering - JHU

<sup>&</sup>lt;sup>(1)</sup>Andreassen et. al. (2011)-Efficient topology optimization in MATLAB using 88 lines of code, SMO

# Overview of the code and speedups<sup>(2)</sup>

#### Minimum compliance

$$\begin{aligned} \min_{\mathbf{x}} c(\hat{\mathbf{x}}) &= \mathbf{f}^T \mathbf{u}(\hat{\mathbf{x}}) \\ K(\hat{\mathbf{x}}) \mathbf{u}(\hat{\mathbf{x}}) &= \mathbf{f} \\ g(\hat{\mathbf{x}}) &= \sum_{e=1}^m \hat{x}_e v_e - V_f |\Omega_h| \le 0 \\ 0 \le x_e \le 1 , \quad \forall e \end{aligned}$$

 $\hat{x}_e$ : physical densities,  $x_e$ : design variables

#### Speedups

- Stiffness matrix assembly;
- Filtering operations and OC update;
- Overall acceleration strategy<sup>(3)</sup>



<sup>(2)</sup>Ferrari, Sigmund (2020)-A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D, SMO

<sup>(3)</sup>Li et al. (2020)-Accelerated fixed-point formulation of Topology Optimization: application to compliance minimization problems, Mech. Res. Comm.

3 Department of Civil and Systems Engineering - JHU

#### Testing with the MBB beam example



•  $\Omega_h = 600 \times 200, V_f = 0.5, r_{\min} = 8$ 

#### Test cases

- T1: Density Fiter, p = 3;
- T2: Density Fiter,  $p = 1 \rightarrow 3$ ;
- T3: Density+Proj. p = 3,  $\beta = 2 \rightarrow 24$ ;
- T4: Density+Proj.  $p = 1 \rightarrow 3$ ,  $\beta = 2 \rightarrow 24$ ;



(d) T4

 $t_S$ : linear solve,  $t_A$ : matrix assembly,  $t_{OC}$ : OC update,  $t_P$ : setup operations



<sup>(4)</sup>Use of sparse2 for assembly and conv2 for filtering

Table: Average iteration time (s) and speedup factors.

| $\overline{\Omega}_h$ | $\frac{300 \times 100}{r_{\min} = 4}$ | $\frac{600 \times 200}{r_{\min} = 8}$ | $\frac{1200 \times 400}{r_{\min} = 16}$ |
|-----------------------|---------------------------------------|---------------------------------------|-----------------------------------------|
| top99neo(s)           | 0.231                                 | 1.19                                  | 5.69                                    |
| top88U <sup>(4)</sup> | 1.55                                  | 1.57                                  | 1.78                                    |
| top88                 | 2.66                                  | 4.09                                  | 5.51                                    |

## Extension to 3D domains (top3D125)



Table: Average iteration time (s) and speedup factors.

| $\Omega_h$        | $48 \times 24 \times 24$ | $96 \times 48 \times 48$ |
|-------------------|--------------------------|--------------------------|
|                   | $r_{\min} = \sqrt{3}$    | $r_{\min} = 2\sqrt{3}$   |
| top3D125(s)       | 1.79                     | 14.20                    |
| $top3Dmgcg^{(5)}$ | 1.78                     | 1.92                     |

$$\Omega_h = 96 \times 48 \times 48, V_f = 0.12$$

change elemental stiffness matrix (8-nodes hexahedron element);
change reshape operations (12 lines)

total);

 $t_S:$  linear solve,  $t_A:$  matrix assembly,  $t_{OC}:$  OC update,  $t_P:$  setup operations



<sup>(5)</sup>Amir et.al. (2014)-On multigrid-CG for efficient topology optimization, SMO

#### Improving the stiffness matrix assembly



- Assemble only lower half  $K^{(s)} \rightarrow \text{cut} \approx 45\%$  of CPU time and RAM;
- Define mesh-related indices as 'int32'<sup>(6)</sup>  $\rightarrow$  RAM is cut to  $\approx 1/4$  and CPU time to  $\approx 1/10$ ;
- chol and similar work with  $K^{(s)}$  (not "\"!!), (CG, MINRES can be adapted);



<sup>&</sup>lt;sup>(6)</sup>https://github.com/stefanengblom/stenglib, Engblom, Lukarski (2015)-*Fast Matlab compatible sparse assembly on multicore computers*, Parallel Computing

<sup>6</sup> Department of Civil and Systems Engineering - JHU

# Improving the efficiency of the OC update



 $\delta_{-} = \max\{0, x_{k,e} - \mu\}, \delta_{+} = \min\{1, x_{k,e} + \mu\}$  (local lower/upper bounds).





 $n_{\rm bs}$ : cumulative number of "bisections"

# Improving the efficiency of the OC update



 $\delta_{-} = \max\{0, x_{k,e} - \mu\}, \delta_{+} = \min\{1, x_{k,e} + \mu\}$  (local lower/upper bounds).

Primal & dual variables updates  
Compute 
$$(\mathbf{x}_{k+1}, \lambda_k^*)$$
 by iterations  
 $x_{k+1,e} = \max\{\delta_-, \min\{\delta_+, x_{k,e}\left(-\frac{\partial_e c(\mathbf{x}_k)}{\lambda \partial_e V(\mathbf{x}_k)}\right)^{\frac{1}{2}}\}\}$   
 $\lambda = \left(\frac{\sum_{e \in \mathcal{M}} x_{k,e}(-\partial_e c(\mathbf{x}_k)/\partial_e V(\mathbf{x}_k))^{1/2}}{g(\mathbf{x}_k)/\partial_e V(\mathbf{x}_k) - |\mathcal{L}|\delta_- - |\mathcal{U}|\delta_+}\right)^2$   
 $\mathcal{M} = \{e \mid \delta_- < x_e < \delta_+\}$   
 $\mathcal{L} = \{e \mid x_e = \delta_-\}$   
 $\mathcal{U} = \{e \mid x_e = \delta_+\}$ 

Repeated filtering operations are avoided if we adopt volume-preserving filters.



 $n_{\rm bs}$ : cumulative number of "bisections"

|                  | $\Lambda = [0, 10^9]$ | Est. | PD   |
|------------------|-----------------------|------|------|
| $n_{\rm bs}$     | 2390                  | 1389 | 750  |
| $t_{\rm stf}(s)$ | 1.18                  | 0.65 | 0.27 |
| $t_{\rm vpf}(s)$ | 0.04                  | 0.03 | 0.03 |

# Introduction of passive (solid & void) elements

Reinforcement of a solid frame while keeping a void region

- $\Omega_h = 900 \times 900$  elements,  $V_f = 0.2$ ;
- Average cost per iteration: 10.8s ( $1.62 \cdot 10^6$  DOFs)



## Extension to linearized buckling: topBuck250



set up buckling analysis  $\approx$  with the same cost as linear analysis

(ppine-X) + (ppi



Topology Optimization with linearized buckling criteria in 250 lines of Matlab  $\,$ 

Federico Ferrari · Ole Sigmund · James K. Guest

- Fully vectorized setup of the buckling eigenproblem and buckling load factors (BLFs) sensitivity analysis;
- Includes 4 design problems by default
  - (a) max BLF, s.t. {vol, compliance} constraints
  - (b) min vol, s.t. {BLF, compliance} constraints
  - (c) min Compliance, s.t. vol constraint
  - (d) min vol, s.t. compliance constraint

• Explicit OC update based on MMA-like approximations;

### ..COMING SOON!



# Thank you for your attention

top99neo and top3D125 codes can be found at www.topopt.dtu.dk

Visit also https://www.ce.jhu.edu/topopt for upcoming news and codes