Topology Optimization of Dynamic Acoustic-Mechanical Structures using the Ersatz Material Model

Jie Hua, b, Song Yaoa and Xiaodong Huangb,*

a Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, China

b Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia

* xhuang@swin.edu.au
Outline

- Research Motivation
- Topology Optimization Algorithm
- Numerical Examples
- Concluding Remarks
Research Motivation

- In real applications, there are many acoustic-mechanical structures and devices which have designated functionalities, such as sound insulation, vibration isolation, etc.

- Topology optimization of structures considering acoustic-mechanical coupling has been widely investigated.

Research Motivation

- Benchmark problem

\[\min J(p) = \int_{\Omega_{\text{obj}}} |p| \, d\Omega \]

\[V_f \leq V^* \]

- the mixed \(u/p \) formulation
- the segregated formulation

Research Motivation

Benchmark problem

\[
\min: J(p) = \int_{\Omega_{\text{obj}}} |p| \, d\Omega \\
V_f \leq V^*
\]

However, the thresholded density-based design using the segregated formulation gives a 28.6% reduction in objective value \((J = 34.9 \, \text{N})\).

Boundary-based level-set method:

\[J = 68.7\,\text{N} \]

Element-based density method (RAMP):

\[J = 48.9\,\text{N} \]

the mixed \(u/p\) formulation
Ersatz Material Model

Built on the previous researches, this paper investigates element-based topology optimization of acoustic-mechanical structures using the Ersatz material model. The bulk modulus, shear modulus and density of each element are linearly interpolated as

\[
\begin{aligned}
K(x_i) &= K_s x_i + K_a (1 - x_i) \\
G(x_i) &= G_s x_i \\
\rho(x_i) &= \rho_s x_i + \rho_a (1 - x_i)
\end{aligned}
\]

\(x_i = 0\) means the element is composed of the acoustic medium (e.g. air) and \(x_i = 1\) for the solid medium.

The potential advantages of using the linear Ersatz material model include

- Achieving the consistency of objective value in the mixed \(u/p\) formulation and the segregated formulation
- Overcoming artificial vibration modes during optimization process
Topology optimization problem

Min.: $J(x, U(x))$

S.t.: $V_f \leq V_f^*$

\[
\begin{cases}
 x_i = 1 & \text{when } x_i \in \Omega_{\text{solid}} \\
 x_i = 0 & \text{when } x_i \in \Omega_{\text{acoustic}} \\
 0 < x_i < 1 & \text{when } x_i \text{ at the acoustic} - \text{solid boundary}
\end{cases}
\]

To solve the optimization problem using the relaxed design variables, $0 \leq x_i \leq 1$, the objective function is modified by introducing Lagrange multipliers for all constraints as

\[
\text{Min.: } f = J(x, U(x)) + \Psi(V_f - V_f^*) + \sum \psi_j (g_j - g_j^*)
\]

the upper and lower bounds of design variables

the floating projection constraint, which simulates the original 0/1 constraints together with the upper and lower bounds of design variables.
Numerical implementation

\[x_{1,i} = (1 - \Lambda)(1 - \frac{d J^k}{d x_i}(\frac{\partial V_f}{\partial x_i})x_i^{k-1}) \]

\[x_{2,i} = \begin{cases}
0 & \text{if } x_{1,i} \leq 0 \\
x_{1,i} & \text{otherwise} \\
1 & \text{if } x_{1,i} \geq 1
\end{cases} \]

\[x_{3,i} = \frac{\sum w(r_{ij})x_{2,j}}{\sum w(r_{ij})} \]

\[x_i^k = \frac{\tanh(\beta \cdot th^k) + \tanh(\beta \cdot (x_{3,i} - th^k))}{\tanh(\beta \cdot th^k) + \tanh(\beta \cdot (1 - th^k))} x_i^k \]

Update \(\Lambda \)

No

\[V_f \leq V_f^* ? \]

Yes

→ optimality criterion

→ the upper and lower bounds

→ filter

→ the floating projection constraint (pushing \(x_i \) from inside toward 0 or 1)

\(\beta \) starts from a small positive value, e.g. \(10^{-6} \) and then increases with \(\Delta \beta \) (e.g., 1) once the solution is convergent.
Representation of optimized topology for CAD-ready model

Convergent solution for a given β

$\mathbf{x}^k = \{x_1^k, x_2^k, \ldots, x_i^k, \ldots, x_N^k\}^T$

$\mathbf{v}^k = \{v_1^k, v_2^k, \ldots, v_i^k, \ldots, v_N^k\}$

$$\tau = \frac{1}{N} \sum_{i=1}^{N} (x_i^k - v_i^k)^2 \leq 0.001$$

and/or

$$\tau = \left| \frac{J(x, U(x)) - J(v, U(v))}{J(x, U(x))} \right| \leq 0.01$$

$\beta = \beta + \Delta \beta$

Stop optimization

Graphic processing

Volume fraction

- $v_i = 1$
- $0 < v_i < 1$
- $v_i = 0$

FEA on \mathbf{v}^k
Sound insulation

- Revisiting the benchmark problem

\[
\min J(p) = \int_{\Omega_{\text{obj}}} |p| \, d\Omega
\]

s.t.: \(V_f \leq V^*\)

\[f = \frac{1}{\pi} \text{Hz} \]
Sound insulation

- Revisiting the benchmark problem

\[J = 32.16 \text{ N} \]
\[\left(\frac{u}{p} \right) \]

Current design

\[J = 32.43 \text{ N} \]
\[\left(\text{segregated} \right) \]

Only 0.84% relative difference

\[J = 48.9 \text{ N} \]
\[\left(\frac{u}{p} \right) \]

Density-based design*

\[J = 34.9 \text{ N} \]
\[\left(\text{segregated} \right) \]

Sound insulation

- Lightweight design

\[
\text{min. } V_f \\
\text{s. t.: } J(x, U(x)) \leq J^* = 40N
\]
Sound insulation

- Lightweight design
 - min. \(V_f \)
 - s. t. \(J(\mathbf{x}, \mathbf{U}(\mathbf{x})) \leq J^* = 40 \text{N} \)

\[J = 39.71 \text{N} \]
(segregated)

\[V_{f_{\text{min}}} = 0.428 \]
Vibration reduction

\[
\min J(\mathbf{u}) = \int_{\Omega_{obj}} |\mathbf{n} \cdot \mathbf{u}| \, d\Omega \quad \text{(vibration amplitude)}
\]
Vibration reduction

\[J = 4.47 \text{ m}^2 \]
(\(\frac{u}{p} \))

\[J = 4.51 \text{ m}^2 \]
(segregated)

\(f = 20 \text{ Hz} \)
Maximizing sound transmission loss

\[
\min: -J(p) = -20\log_{10}\left(\frac{|P_{\text{in}}|}{|P_{\text{out}}|}\right)
\]

\[J = 67.27 \, \text{dB} \ (u/p)\]

\[J = 68.76 \, \text{dB} \ \text{(segregated)}\]
Concluding remarks

- This paper proposes a new topology algorithm for designing acoustic-mechanical structures using the linear ersatz material model.

- The advantages of the proposed algorithm include
 - the consistency between the mixed u/p formulation and the segregate formulation
 - no artificial vibration modes during optimization
 - integration of the post-processing of element-based optimized design in optimization
Topology optimization of dynamic acoustic–mechanical structures using the ersatz material model

Jie Hu*, Song Yao†, Xiaodong Huang‡,*

* Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Hunan Changsha, 410075, China
† Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
‡ Received 1 April 2020; received in revised form 12 August 2020; accepted 15 August 2020

Abstract

Topology optimization of dynamic acoustic–mechanical structures is challenging due to the interaction between the acoustic and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology optimization (FPTO) method based on the mixed displacement/pressure (u/p) finite element formulation and the ersatz material model. The former is able to release the need for tracking the interface boundaries explicitly between the structural and acoustic

Thank you