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O In real applications, there are many acoustic-mechanical structures and devices which have
designated functionalities, such as sound insulation, vibration isolation, etc.

U Topology optimization of structures considering acoustic-mechanical coupling has been widely
investigated.

G.H. Yoon, J.S. Jensen, O. Sigmund. Topology optimization of acoustic-structure interaction
problems using a mixed finite element formulation. International Journal for Numerical Methods in
Engineering. 70(9) (2007) 1049-1075.

L. Shu, Y.M. Wang, Z.D. Ma. Level set based topology optimization of vibrating structures for
coupled acoustic-structural dynamics. Computers and Structures. 132 (2014) 34-42.

R. Picelli, W.M. Vicente, R. Pavanello, Y.M. Xie. Evolutionary topology optimization for natural
frequency maximization problems considering acoustic—structure interaction. Finite Elements in
Analysis and Design. 106(15) (2015) 56-64.

B.D. Cetin, S.B. Dilgen, N. Aage, J.S. Jensen. Topology optimization of acoustic mechanical
interaction problems: a comparative review. Structural and Multidisciplinary Optimization.
60(2) (2019) 779-801.
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O Benchmark problem
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However, the thresholded density-based design using the
segregated formulation gives a 28.6% reduction in objective
value (] = 34.9 N).
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Built on the previous researches, this paper investigates element-based topology optimization of
acoustic-mechanical structures using the Ersatz material model. The bulk modulus, shear
modulus and density of each element are linearly interpolated as

l K(x;) = Ksx; + Ko (1 — x;)
G(x;) = Ggx;
L P(x) = poxi + pa(1 = xy)

A

x; = 0 means the element is composed of the acoustic medium (e.g. air) and x; = 1 for the solid medium.

The potential advantages of using the linear Ersatz material model include

L Achieving the consistency of objective value in the mixed u/p formulation and the segregated
formulation

O Overcoming artificial vibration modes during optimization process
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Min.: J(x,U(x))

x; =1 when x; € Qq1i4d
x; =0 when x; € Q. coustic =) (/1 constraints of design variables
0 < x; <1 when x; at the acoustic — solid boundary

To solve the optimization problem using the relaxed design variables, 0 < x; < 1, the objective
function is modified by introducing Lagrange multipliers for all constraints as

Min.: f = J(x,U®)) + W(V, —V7) + zwj(gj ~ ;)

the upper and lower bounds of design variables

the floating projection constraint, which simulates
the original 0/1 constraints together with the upper
and lower bounds of design variables.
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N _ d]k/dxl k—1 . . - .
1 x = 1= - A Xi)xl- m) optimality criterion
0 lf xlji <0
Xp; =1{%; otherwise =) the upper and lower bounds
1 lf lei > 1
Update A W
“ vy, = 2%, = filter
' Yw(rij)

k _
P =

X

h . hk h o , — hk . s - 1
tanh(B - th*) + tanh[B - (x3; — ¢ )] mp the floating projection constrain

k
tanh(f - th¥) + tanh[§ - (1 — th")] (pushing x; from inside toward 0 or 1)

S starts from a small positive value, e.g. 10-° and then
Increases with AS (e.g., 1) once the solution Is convergent.
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Convergent solution for a given
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O Revisiting the benchmark problem
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O Revisiting the benchmark problem

J=32.16 N
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A 158

150
140
130
120
110

J=32.43 N
(segregated)

Only 0.84% relative difference
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Density-based design*

*B.D. Cetin, S.B. Dilgen, N. Aage, J.S. Jensen. Topology
optimization of acoustic mechanical interaction problems: a
comparative review. Structural and Multidisciplinary Optimization.
60(2) (2019) 779-801. -11-
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O Lightweight design
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O Lightweight design
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Vibration reduction

min: J(u) = j In - u| d0 (vibration amplitude)
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Vibration reduction
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 This paper proposes a new topology algorithm for designing
acoustic-mechanical structures using the linear ersatz material model.

 The advantages of the proposed algorithm include

= the consistency between the the mixed u/p formulation and the segregate formulation

= no artificial vibration modes during optimization

= integration of the post-processing of element-based optimized design in optimization
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Abstract

Topology optimization of dynamic acoustic—mechanical structures is challenging due to the interaction between the acoustic
and structural domains and artificial localized vibration modes of structures. This paper presents a floating projection topology
optimization (FPTO) method based on the mixed displacement/pressure (u/p) finite element formulation and the ersatz material
model. The former is able to release the need for tracking the interface boundaries explicitly between the structural and acoustic
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