Creating Diverse and Competitive Structural Designs via Topology Optimization

Yunzhen He, Kun Cai, Zi-Long Zhao, Yi Min 'Mike' Xie

RMIT University, Melbourne, Australia

Mount Everest: The Unique, Global Optimum

Zhang Jia Jie:

Multiple Peaks of Similar Heights but Different Forms

How to create *diverse* and *competitive* designs without changing loading or boundary conditions?

Diverse – topologically different **Competitive** – structurally efficient

Philip Yuan's 2019 footbridge (metal printing and composite weaving) (Our BESO software, Ameba, was used for the form-finding)

- This study was based on the Bi-directional Evolutionary Structural Optimization (BESO) method, but most of the tactics can be applied to other optimization methods, such as SIMP, Level Set
- *ESO method* (Xie and Steven, 1993)
- BESO method (Querin, Steven, Xie 1998; Huang and Xie, 2007)

Tactic 1:

Changing parameters in the optimization algorithm

Tactic 2:

Penalizing existing design(s)

Qatar Convention Centre

(by Arata Isozaki, Mutsuro Sasaki and co-workers)

Extended ESO method was used for form-finding

The overall stiffness differs by 9.1%

The overall stiffness differs by 3%

Tactic 3:

Using constraints as the design driver

The overall stiffness of the bottom design is 12% lower

Specify Non-design Domain

The overall stiffness differs by 7%

Penalizing Part of the Design Domain

The overall stiffness differs by 4%

Tactic 4:

Introducing some random holes in the initial design domain

These holes are allowed to be filled, if necessary

The overall stiffness differs by 2%

Tactic 5:

Combining BESO with Genetic Algorithm

Applying **crossover** and **mutation** to elements so that their sensitivity rankings are altered

BESO

BESO + Genetic Algorithm

BESO

BESO + Genetic Algorithm

The overall stiffness differs by 1.5%

Conclusions

- We have proposed and demonstrated several simple and effective tactics for achieving topologically different and structurally efficient designs
- Such diverse and competitive designs are of practical importance to architects and other designers
- The same tactics can be applied to other topology optimization methods

References and Contact

K. Yang, Z.L. Zhao, Y. He, S. Zhou, Q. Zhou, W. Huang, Y.M. Xie. Simple and effective strategies for achieving diverse and competitive structural designs, *Extreme Mechanics Letters* 30 (2019) 100481.

Y. He, K. Cai, Z.L. Zhao, Y.M. Xie. Stochastic approaches to generating diverse and competitive structural designs in topology optimization, *Finite Elements in Analysis and Design* 173 (2020) 103399.

E-mail address: mike.xie@rmit.edu.au

Background: BESO bridge design by Yi Min 'Mike' Xie and Dingwen 'Nic' Bao