
Mixed projection- and density-based topology
optimization with applications to structural

assemblies

Nicolo Pollini and Oded Amir

Faculty of Civil & Environmental Eng., Technion – Israel Institute of Technology

TOP webinar #4, August 27 2020

Mixed projection- and density-based topopt 1



The paper in SAMO
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Motivation: optimize a design and its partitioning

Task: redesign an engine support rib for AM

Challenges:

I Rib is bigger than AM facility → print in parts and weld

I Welding of printed parts: mostly unknown territory

I What are the constraints??? material? geometry?

FOCUS ON THE CONCEPTUAL GEOMETRIC PROBLEM
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Motivation: optimize a design and its partitioning

Main idea

Optimizing the design and
later searching for the best
partition may result in
sub-optimal, or even
infeasible results with
respect to the
manufacturing scenario
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Optimizing the assembly ‘cut’

minimize :
ρ,x

f (ρ, x)

subject to : gk (ρ, x) ≤ 0, k = 0, ...,m

: 0 ≤ ρi ≤ 1, i = 1, ...,Nele

: xlb ≤ xj ≤ xub, j = 1, ...,Nnode

with : K(ρ, x)u = f

I ρ is the common density-based design field

I x are geometric coordinates of the cut

I Constraints gk contain the controls over the design near the cut,
and a standard total volume constraint
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Evolution of the design parametrization

The problem statement is a shape and (freeform) topology
optimization coupled by geometric projection

How to optimally embed a discrete object within an otherwise
freeform continuum domain?
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Discrete-continuum coupling (1)

Coupling a ground structure of rebars to continuum concrete: a
rebar-concrete filter [Amir, 2013]

x̃i = xi
1

Nij

∑
j∈Ni

(x̄j )
pE

Definition of neighborhood

Without filter

With filter
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Discrete-continuum coupling (2)

Coupling a post-tensioning tendon to continuum concrete: a
tendon-to-concrete filter [Amir and Shakour, 2018]

cable profile determined according to bending moments

optimized beam did not consider the prestressed tendon
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The application in post-tensioned concrete

Concrete distribution is determined by filter and projection operations:
1. Density filter

[Bruns and Tortorelli, 2001, Bourdin, 2001] :

ρ̃i =

∑
j∈Ni

w(xj )vjρj∑
j∈Ni

w(xj )vj

2. Tendon-to-concrete filter:

ρ̂i = ρ̃i + (1 − ρ̃i )e
− 1

2

(
di
βfil

)µ

3. Heaviside projections – ‘robust’ approach
[Guest et al., 2004, Wang et al., 2011,

Lazarov et al., 2016] :

ρero
i =

tanh(βHSηero) + tanh(βHS (ρ̂i − ηero))

tanh(βHSηero) + tanh(βHS (1 − ηero))

ρdil
i =

tanh(βHSηdil ) + tanh(βHS (ρ̂i − ηdil ))

tanh(βHSηdil ) + tanh(βHS (1 − ηdil ))

 

 

 

  

  

 

 

Mixed projection- and density-based topopt 9



The application in post-tensioned concrete

Line object (tendon) and freeform continuum (concrete) are optimized
concurrently with a geometric projection coupling them
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Manufacturing by 3D printing

Collaboration with Gieljan Vantyghem & Wouter de Corte, Ghent U.
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...Back to our problem statement

minimize :
ρ,x

f (ρ, x)

subject to : gk (ρ, x) ≤ 0, k = 0, ...,m

: 0 ≤ ρi ≤ 1, i = 1, ...,Nele

: xlb ≤ xj ≤ xub, j = 1, ...,Nnode

with : K(ρ, x)u = f

I ρ is the common density-based design field

I x are geometric coordinates of the cut

I Constraints gk contain the controls over the design near the cut,
and a standard total volume constraint
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Common density-based building blocks

Three-field density representation, ρ→ ρ̃→ ρ̄

1. Density filter [Bruns and Tortorelli, 2001, Bourdin, 2001]:

ρ̃i =

∑
j∈Ni

w(∆xij )ρj∑
j∈Ni

w(∆xij )

2. Smooth Heaviside projections
[Guest et al., 2004, Wang et al., 2011, Lazarov et al., 2016]:

ρ̄ero
i =

tanh (βHSηero) + tanh (βHS (ρ̃i − ηero))

tanh (βHSηero) + tanh (βHS (1− ηero))
,

ρ̄int
i =

tanh (βHSηint) + tanh (βHS (ρ̃i − ηint))

tanh (βHSηint) + tanh (βHS (1− ηint))
,

ρ̄dil
i =

tanh (βHSηdil ) + tanh (βHS (ρ̃i − ηdil ))

tanh (βHSηdil ) + tanh (βHS (1− ηdil ))
,

with e.g. ηero = 0.6, ηint = 0.5, ηdil = 0.4
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Line-to-continuum projection

Projection achieved using Super-Gaussian functions:

φi ,j = e
− 1

2

(
d2

i,j

β2
φ

)µφ
, for j = 1, . . . ,Nele
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A point near two cuts
Naively summing the projection functions is not suitable:

φi = e
− 1

2

(
d2

1,i

β2
φ

)µφ
+ e
− 1

2

(
d2

2,i

β2
φ

)µφ
, for i = 1, . . . ,Nele

Use a differentiable minimum distance with large q:

d̄2
i = d2

max −
(
d2

max − d2
1,i

)q+1
+
(
d2

max − d2
2,i

)q+1(
d2

max − d2
1,i

)q
+
(
d2

max − d2
2,i

)q
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Avoiding sharp distance fields

The point-to-segment distance field is filtered to avoid sharp transitions:

d̃2
i =

∑
j∈Ni

w(∆xij )d̄
2
j∑

j∈Ni
w(xj )

The filtered distance eventually enters the Super-Gaussian projection.
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Basic components of problem formulation

Objective is minimum compliance of eroded design [Lazarov et al., 2016]:

f (ρ, x) = fT u(ρ̄ero , x) K(ρ̄ero , x)u = f

Modified SIMP interpolation scheme [Sigmund and Torquato, 1997]:

Ei = Emin + (Emax − Emin) (ρ̄ero
i )pE

Volume constraint on the full structural domain:

g0(ρ) =

∑Nele
i=1 ρ̄

dil
i vi∑Nele

i=1 vi

− g∗0,dil ≤ 0

Slope constraint to regularize the cut:

g3(x) =
1

∆x2
max

(
Nnode−1∑

i=1

(
∆x2

i

)p

) 1
p

− 1 ≤ 0
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Sensitivity analysis

Lots of chain rules... details are in the paper

MATLAB code can be provided upon request
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Control over projected region: volume

1. Maximum volume in the region of the cut (e.g. limit welding energy)

g1(ρ, x) =

∑Nele
i=1 ρ̄

dil
i vi φi (x)∑Nele

i=1 vi φi (x)
− g∗1,dil ≤ 0

Volume fraction is limited to 25% in the region of the cut
compliance 194.1 → 202.1

Mixed projection- and density-based topopt 19



Control over projected region: stiffness

2. Assign a Young’s modulus equal to Eφ to the elements in the region
of the cut:

Ei = Emin + (Emax − (Emax − Eφ)φi − Emin) ρ̄pE
i ,ero

with Eφ = 0.5Emax , compliance 194.1 → 207.1

I Can be extended to other material properties, e.g. stress
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Control over projected region: max thickness

3. Maximum length scale [Guest, 2009, Wu et al., 2018] in the region of the
cut (e.g. limit thickness of connected members)

g2(ρ̂, x) =

(∑Nele
i=1 ρ̂

p
i φi∑Nele

i=1 φi

)1/p

− α ≤ 0

compliance 38.92 → 44.84
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Control over projected region: max thickness

3. Maximum length scale [Guest, 2009, Wu et al., 2018] in the region of the
cut (e.g. limit thickness of connected members)
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Control over projected region: max thickness

3. Maximum length scale [Guest, 2009, Wu et al., 2018] in the region of the
cut (e.g. limit thickness of connected members)

g2(ρ̂, x) =

(∑Nele
i=1 ρ̂

p
i φi∑Nele

i=1 φi

)1/p

− α ≤ 0

compliance 38.92 → 47.38
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Control over projected region: filter radius

4. Spatial variation of length scale in the region of the cut
[Amir and Lazarov, 2018]

r̄min(φi ) = rmin(1 + γ φi )

I Find the region in which to increase either the minimum or
maximum size

I Both cases lead to fewer and thicker members at assembly interface
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Some related work

I Embedding of pre-designed polygonal objects
[Qian and Ananthasuresh, 2004]

I Integrated optimization of component layout and topology
[Xia et al., 2013]

I Material density and level sets for embedding movable holes
[Kang and Wang, 2013]

I Explicit topology optimization with multiple embedding
components [Zhang et al., 2015]

I Integrated optimization of discrete thermal conductors and solid
material [Li et al., 2017]

I A combined parametric shape optimization and ersatz material
approach [Wein and Stingl, 2018]

I Thorough discussion in review by Wein, Dunning & Norato
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Summary

I Presented a coupled parametrization for concurrent design of a
structure, its partition into parts and the assembly interface

I Control over the region of the interface: minimum and maximum
sizes, material properties, material quantity, shape of the cut, etc.

I Many possibilities for coupling density and projection: get the best
of both worlds???

Density-based

+ Most design space freedom

+ Smooth and well-behaved

− Limited geometric control

Geometric projection

+ Explicit, precise geometric
control

− Restricted design freedom

− Could be highly nonlinear

∗ a.k.a. feature-mapping
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Questions?
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