Topology optimisation of heat sinks for instantaneous chip cooling: using a transient pseudo-3D thermofluid model

Tao Zeng¹, Hu Wang¹, Mengzhu Yang¹, Joe Alexandersen² ¹ State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University

IJHMT 2020 154:119681 doi:10.1016/j.ijheatmasstransfer.2020.119681

Joe Alexandersen Assistant Professor SDU Mechanical Engineering University of Southern Denmark (SDU) joal@iti.sdu.dk

Motivation

- \rightarrow Increasing power density of electronics
 - \rightarrow Smaller and more powerful
 - \rightarrow Serious thermal management issues
- \rightarrow Electronics is inherently transient
 - \rightarrow Varying thermal power output
 - ightarrow Needs fast response for sudden peak in load

160 0.09 0.085 155 0.08 150 0.075 145 0.07 140 0.065 135 0.06 130 0.055 Temperature [C] اءًا 125 0.05 [W/ 120 0.045 Power 0.04 115 0.035 110 0.03 105 0.025 100 0.02 95 Temperature 0.015 90 0.01 85 0.005 Powe 80 L 0 SDU 🎓 100 20 40 60 80 Time (s)

[https://www.pikist.com/free-photo-suljg/da]

Instantaneous cooling

[Zeng, ..., Alexandersen – doi:10.1016/j.ijheatmasstransfer.2020.119681]

- \rightarrow CPU chip: maximum temperature limit
 - \rightarrow Above limit, speed is throttled down (worse performance)
 - \rightarrow Critical case: turn on cooling system when limit is reached
- \rightarrow Goal: lower temperature fast!
 - → Not *long* time frame: steady state performance
 - → *Short* time frame: instantaneous performance
- \rightarrow Requires time-dependent simulation model
 - → Computationally expensive!

SDU 🍝

→ Simplified model to make each time step cheaper?

[https://www.pikist.com/free-photo-suljg/da]

Transient flow-based problems

 \rightarrow Recent review of topology optimisation of flow-based problems:

 \rightarrow showed that only 7% of 186 papers treated transient problems!

(a) All papers

(b) Fluid flow only

Figure 8. Distribution of papers for fluid model type: SS = steady-state laminar flow; TR = transient laminar flow; TU = turbulent flow; NN = Non-Newtonian fluid.

[Alexandersen & Andreasen – doi:10.3390/fluids5010029]

#sdudk

Pseudo-3D: 2 layer model

[Zeng, ..., Alexandersen – doi:10.1016/j.ijheatmasstransfer.2020.119681]

→ Pseudo-3D model by Haertel et al. [doi:10.1016/j.ijheatmasstransfer.2018.01.078]

- \rightarrow Extruded heat sink geometry with base plate (heat source)
- \rightarrow Cut-plane through channel and heat sink
- \rightarrow Channel layer is then coupled to base plate layer
- → Heuristic coupling heat transfer coefficient
- → Zeng et al. [doi:10.1016/j.ijheatmasstransfer.2018.01.039]
 - \rightarrow Calculate coupling coefficient from reference geometry
- → Alternative: Yan et al. [doi:10.1016/j.ijheatmasstransfer.2019.118462]
 - \rightarrow Analytical derivation based on assumptions

sdu.dk

Instantaneous performance

[Zeng, ..., Alexandersen – doi:10.1016/j.ijheatmasstransfer.2020.119681]

Steady-state performance

[Zeng, ..., Alexandersen – doi:10.1016/j.ijheatmasstransfer.2020.119681]

But steady-state design outperforms transient design for long term cooling!

Water-cooled design

[Zeng, ..., Alexandersen – doi:10.1016/j.ijheatmasstransfer.2020.119681]

sdu.dk

SDU 🎓

Water-cooled design: practical conditions

[Zeng, ..., Alexandersen – doi:10.1016/j.ijheatmasstransfer.2020.119681]

→ Hits 90°C, cooling system turned on → Reduced to 55°C, cooling system turned off

 \rightarrow Time from 90 to 55 much faster!

ightarrow Time from 55 back to 90 more or less the same

→ Pumping energy: 67% saved!

SDU 🎸

References

Zeng, Wang, Yang, Alexandersen (2020)	Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model. IJHMT 2020 154:119681, doi:10.1016/j.ijheatmasstransfer.2020.119681
Alexandersen & Andreasen (2020)	A review of topology optimisation for fluid-based problems. Fluids 2020 5(1):29, doi:10.3390/fluids5010029
Alexandersen et al. (2018)	Design of passive coolers for light-emitting diode lamps using topology optimisation. IJHMT 2018 122:138-149, doi:10.1016/j.ijheatmasstransfer.2018.01.103
Haertel et al. (2018)	Topology optimization of a pseudo 3D thermofluid heat sink model. IJHMT 2018 121:1073-1088, doi:10.1016/j.ijheatmasstransfer.2018.01.078
Zeng et al. (2018)	Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization. IJHMT 2018 121:663-679, doi:10.1016/j.ijheatmasstransfer.2018.01.039
Yan et al. (2019)	Topology optimization of microchannel heat sinks using a two-layer model. IJHMT 2019 143:118462, doi:10.1016/j.ijheatmasstransfer.2019.118462

Any questions?

Joe Alexandersen Assistant Professor SDU Mechanical Engineering University of Southern Denmark (SDU) joal@iti.sdu.dk