Topology optimization of pressure-loaded structures and compliant mechanisms using the Darcy method

Prabhat Kumar, Jan Frouws, Matthijs Langelaar **Tu** Delft

Struct Multidisc Optim (2020) 61:1637 https://doi.org/10.1007/s00158-019-02442-0

TOP Webinar 3 July 21, 2020

Motivation: soft robotics

- Compliant
- Often actuated by pressure
- Cheaper and safer than conventional robots

Aim: automate soft robot design

Challenges and previous approaches

Design-dependent pressure load:

- Where to apply?
- Load sensitivity

Desired:

- Easy to implement
- ☑ Extensible to 3D
- ☑ Compatible with density approach

Prior art:

- Level set and evolutionary methods
- Discrete boundary-identification approaches
- 3-field approach with mixed finite elements

Our approach

Core idea:

Construct pressure field for a given density field through an auxiliary problem based on Darcy's Law:

$$\mathbf{q} = K\nabla p$$

Flow through a porous medium gradient

Pressure

Balance equation leads to:

$$\nabla \cdot (K\nabla p) = 0$$

Constructing pressure field

$$\nabla \cdot \left(K(\rho) \nabla p \right) = 0$$

Constructing pressure field

 p_{in}

Constructing pressure field

$$\nabla \cdot (K(\rho)\nabla p) + Q(\rho)(p - p_{out}) = 0$$

Process $\mathbf{A}(\boldsymbol{\rho})\mathbf{p} = \mathbf{0}$ $\mathbf{K}(\boldsymbol{\rho})\mathbf{u} = \mathbf{f} = \mathbf{H}\mathbf{p}$ Darcy Mechanics $\mathbf{f}^T \mathbf{u}$ / $V(oldsymbol{ ho})$ Constraint Objective **MMA TU**Delft

Optimizing pressure-loaded structures

*) Problem first proposed by Hammer and Olhoff, 2000

Generating pressure-driven mechanisms

Preview: 3D

In preparation, with Prabhat Kumar

Summary and open challenges

- New approach for density-based topology optimization of pressure-loaded structures and mechanisms
 - Modest computational cost
 - Consistent load sensitivities
 - **Extensible to 3D**
- Challenges:
 - Large deflections
 - Self-contact

