

Design of Phononic-like Structures and Band-Gap Tuning by Concurrent Two-scale Topology Optimization

Xuan Liang^{1,2} & Jianbin Du^{1*}

^{1*} School of Aerospace Engineering, Tsinghua University, China

&

² Department of Mechanical Engineering and Materials Science, University of Pittsburgh, United States

Background and motivition

- Concurrent two-scale modeling and method for band-gap design
- Extension of the work connecting additive manufactured lattice infills

Conclusions

Background and Motivation

Background

Vibration/sound isolation and mitigation : car, aircraft, high speed train, subway, factory machine, et al.

Active control

Passive design:

During recent years, the design problem has benefited from the methodology of topology optimization.

Background and Motivation

Design of microscopic level:

Reduce noise/vibration by microstructural or two-scale topology optimization

> Phononic crystal

Periodically structured functional material; Energy band gap property for elastic wave.

Background and Motivation

Two ways of band gap tuning

9/2/2020 6:06 PM Page 6

Modeling and Methods

Multimaterial interpolation model at 2-scale + 2-scale analysis + 2-scale optimization + :

Design objectives

 Minimization of the Transmission Coefficient of the Sound power flow (STC)

Sound power flow (energy flux) \prod_{S} is defined by

$$\Pi_{S} = \int_{S} I_{n} \, dS = \int_{S} \frac{1}{2} \operatorname{Re}(p_{f} v_{n}^{*}) \, dS.$$
(3)

S – Structural surface I_n – Power flow density p_f – Acoustic sound pressure at the structural surface

 v_n^* - Complex conjugate of the normal velocity of the structural surface

$$STC = \frac{\prod_{SO}}{\prod_{SI}} = \frac{\int \frac{1}{2} \operatorname{Re}(p_f v_n^*) dS}{\int \int \frac{1}{2} \operatorname{Re}(p_f v_n^*) dS}.$$

 Π_{SO} – Sound power at specified output area

 Π_{SI} – Sound power at specified input area

Multi-material interpolation at 2 scale (λ , μ , ρ)

Microscale: (n+1) base material interpolation

 ${}_{1}\boldsymbol{D}^{\mathrm{MI}} = \boldsymbol{D}^{\mathrm{MI}} = \lambda_{n}^{p} \left\{ \lambda_{n-1}^{p} [\lambda_{n-2}^{p} (\cdots) + (1 - \lambda_{n-2}^{p}) \boldsymbol{D}_{n-1}] + (1 - \lambda_{n-1}^{p}) \boldsymbol{D}_{n} \right\} + (1 - \lambda_{n}^{p}) \boldsymbol{D}_{n+1}$ ${}_{1}\eta^{\mathrm{MI}} = \eta^{\mathrm{MI}} = \lambda_{n}^{q} \left\{ \lambda_{n-1}^{q} [\lambda_{n-2}^{q} (\cdots) + (1 - \lambda_{n-2}^{q}) \eta_{n-1}] + (1 - \lambda_{n-1}^{q}) \eta_{n} \right\} + (1 - \lambda_{n}^{q}) \eta_{n+1}$

Homogenization

First microstructure design variable: λ

Second microstructure design variable: μ

$$\boldsymbol{D}_{1}^{\mathrm{H}}(\boldsymbol{\lambda}) = \frac{1}{|Y|} \int_{Y^{2}} \boldsymbol{D}^{\mathrm{MI}}(\boldsymbol{I} - \boldsymbol{b}\boldsymbol{u}) \mathrm{d}Y \qquad \boldsymbol{\eta}_{1}^{\mathrm{H}}(\boldsymbol{\lambda}) = \frac{1}{|Y|} \int_{Y^{2}} \boldsymbol{\eta}^{\mathrm{MI}} \mathrm{d}Y$$
$$\boldsymbol{D}_{2}^{\mathrm{H}}(\boldsymbol{\mu}) = \frac{1}{|Y|} \int_{Y^{2}} \boldsymbol{D}^{\mathrm{MI}}(\boldsymbol{I} - \boldsymbol{b}\boldsymbol{u}) \mathrm{d}Y \qquad \boldsymbol{\eta}_{2}^{\mathrm{H}}(\boldsymbol{\mu}) = \frac{1}{|Y|} \int_{Y^{2}} \boldsymbol{\eta}^{\mathrm{MI}} \mathrm{d}Y$$

Macroscale: 2 metamaterial interpolation Macrostructure design variable: ρ

 $\boldsymbol{D}^{\mathrm{MA}}(\rho) = \rho^{p} \boldsymbol{D}_{1}^{\mathrm{H}}(\boldsymbol{\lambda}) + (1 - \rho^{p}) \boldsymbol{D}_{2}^{\mathrm{H}}(\boldsymbol{\mu}) \qquad \eta^{\mathrm{MA}}(\rho) = \rho^{q} \eta_{1}^{\mathrm{H}}(\boldsymbol{\lambda}) + (1 - \rho^{q}) \eta_{2}^{\mathrm{H}}(\boldsymbol{\mu})$

Modeling and Methods

Example of 2 base material and 2 metamaterial

Modeling and Methods

Flow chart of 2-scale topology optimization for band-gap

Page 11

Numerical examples

School of Aerospace Engineering, Tsinghua University

9/2/2020 6:06 PM Page 12

Example 1 – Verification of band gap

7. 2 (1) 7. 2 (

Example 1 – Verification of band gap

Size effect of macrostructure

Example 2 – 2 scale optimization for band gap tuning

Base materials: rubber and Aluminum (Al)

No band gap between 0~12000 rad/s

ω = 3000rad/s

ω = 6000rad/s

$\omega = 10000 \text{rad/s}$

Extension of the work connecting additive manufactured lattice infills

School of Aerospace Engineering, Tsinghua University

9/2/2020 6:06 PM Page 19

Consideration of additive manufacturing

1、 Predefined microstructural pattern

2、 sample tensile test for obtaining equivalent material properties

School of Aerospace Engineering, Tsinghua University

3、LS fitting for obtaining interpolation formula

Consideration of additive manufacturing

4、 Metamaterial topology optimization at macroscopic level for obtaining the desired band-gap

Consideration of additive manufacturing

5、Material density mapping and CAD reconstruction of the optimized structures using lattice infills

Conclusions

- The accuracy of determining band-gap property based on transmission coefficients for elastic sound propagation of the macroscopic domain has been validated. Significant influence of the dimensional finitude of the macroscopic domain on the band-gap feature is also shown in this way .
- The proposed two-scale topology optimization methodology is able to create the desired band-gap properties at the targeted excitation frequency.
- It suggests that the proposed two-scale topology optimization can be a very promising tool to find the desired band-gap property for the macroscopic design domain with specified boundary conditions even though no reasonable initial guess of the material layout in the design domain is available.
- The method is easy extended for band-gap tuning design of the structure with additive manufactured lattice infills.

Thank you for your attention !

School of Aerospace Engineering, Tsinghua University

9/2/2020 6:06 PM Page 24