

Successive Iteration of Analysis and Design (SIAD) for large-scale eigenvalue topology optimization

Zhan Kang

Jingjie He, Lin Shi, Zhaohui Miao

Dalian University of Technology

ISSMO TOP Webnar June 25, 2020

Ο

Background: Large scale eigenvalue-related TO

- Natural frequency/ forbidden interval/ frequency gap
- PnC and PtC metamaterials
- Linear buckling

Accurate analysis requires fine FE discretization.

Example: frequency maximization

max:
$$\omega_j$$

s.t.
$$\mathbf{K}\mathbf{\phi}_{j} = \omega_{j}^{2}\mathbf{M}\mathbf{\phi}_{j}$$

$$\sum_{e=1}^{N_{e}} x_{e}V_{e} - f_{v}V_{0} \leq 0$$

$$0 < \underline{x} \leq x_{e} \leq 1, \quad e = 1, \cdots, N_{e}$$

RAMP model
$$E_e = \frac{x_e}{1 + p(1 - x_e)} E_0, \quad \rho_e = x_e \rho_0$$

Major issue: computational cost for analysis

Cost for static compliance minimization of a 12.83 Million DOF model

Procedures	Computing time per iteration
Assembling global stiffness matrices	33 sec. (3.1%)
Finite element solution $Ku = f$	1005 sec. (95.5%)
Sensitivity analysis & optimization	14 sec. (1.3%)

For eigenvalue-related problems, the difficulty is even worsened by higherorder eigenvalues, and repeated eigenvalues.

Conventional (nested double-loop) approach

in Engineering & Advanced Science

Dalian University of Technology

Basic idea of SIAD method

Single loop iteration for eigenvalue analysis and design

Approximate eigenmodes improved through a linear equation

Kang et al. CMAME 2020; 362: 112847

Procedures of SIAD

□ Case of fundamental frequency

Discussion on convergence (case of distinct eigenvalue)

Exact eigenpairs for (*k*-1)th design: λ_1^{k-1} , λ_2^{k-1} , ..., λ_n^{k-1} $\boldsymbol{\varphi}_1^{k-1}$, $\boldsymbol{\varphi}_2^{k-1}$, ..., $\boldsymbol{\varphi}_n^{k-1}$ for *k*th design: λ_1^k , λ_2^k , ..., λ_n^k $\boldsymbol{\varphi}_1^k$, $\boldsymbol{\varphi}_2^k$, ..., $\boldsymbol{\varphi}_n^k$

$$\begin{array}{c} \Delta \lambda_{j}^{k} = \left(\mathbf{\varphi}_{j}^{k-1} \right)^{T} \left(\Delta \mathbf{K}^{k} - \lambda_{j}^{k-1} \Delta \mathbf{M}^{k} \right) \mathbf{\varphi}_{j}^{k-1} \\ 2 \left(\mathbf{\varphi}_{j}^{k-1} \right)^{T} \mathbf{M}^{k-1} \Delta \mathbf{\varphi}_{j}^{k} = - \left(\mathbf{\varphi}_{j}^{k-1} \right)^{T} \Delta \mathbf{M}^{k} \mathbf{\varphi}_{j}^{k-1}
\end{array}$$

Approximate eigenpairs for (*k*-1)th and *k*th designs: $\tilde{\varphi}^{k-1} = \sum_{j=1}^{n} a_{j}^{k} \varphi_{j}^{k}$ $\tilde{\varphi}^{k-1} = \sum_{j=1}^{n} a_{j}^{k-1} \varphi_{j}^{k-1}$ Define: $\eta_{j}^{k-1} = \frac{a_{j}^{k-1}}{a_{1}^{k-1}}, j = 1, 2, ..., n$ $\eta_{j}^{k} = \frac{\lambda_{1}^{k} a_{j}^{k}}{\lambda_{j}^{k} a_{1}^{k}}, j = 1, 2, ..., n$

We prove that convergence can be ensured on the condition that design change in each iteration is sufficiently small:

$$\eta_j^k \approx \frac{\lambda_1^{k-1} a_j^{k-1}}{\lambda_j^{k-1} a_1^{k-1}} < \eta_j^{k-1}, \ j = 2, 3, ..., n$$

CMAME 2020; 112847

Case of higher-order frequencies

Subspace iteration-like procedures:

* For repeated eigenvalues, a sub-problem of eigenvalue analysis needs to be solved to find Gateaux differentiable eigenmodes:

$$\mathbf{F}\mathbf{c}_{i} = \lambda_{i}^{\prime}\mathbf{c}_{i} \qquad \text{where} \quad \mathbf{F} = \left(\tilde{\mathbf{\Phi}}^{k}\right)^{\mathrm{T}} \left(\partial \mathbf{K}^{k} / \partial x_{e} - \left(\tilde{\omega}_{r}^{k}\right)^{2} \partial \mathbf{M}^{k} / \partial x_{e}\right) \tilde{\mathbf{\Phi}}^{k}$$
$$\bar{\tilde{\mathbf{\Phi}}}^{k} = \tilde{\mathbf{\Phi}}^{k}\mathbf{C}$$

Example: Fundamental frequency maximization

Insensitive to initial trial eigenvectors

in Engineering & Advanced Science

Example: Fundamental frequency maximization

Optimized design obtained with random initial trial eigenmodes

Research group of innovation Design in Engineering & Advanced Science

Dalian University of Technology 11

Example: frequency gap maximization

Conclusions

- SIAD implements concurrent convergence of eigenvalue analysis and design optimization.
- Affordable solution of eigenvalue optimization with millions of DOFs on a desktop computer.

Computer Methods in Applied Mechanics and Engineering Volume 362, 15 April 2020, 112847

THANK YOU !

