Multi-material topology optimization of lattice structures using geometry projection

TOP Webinar

Hesaneh Kazemi and Julián Norato

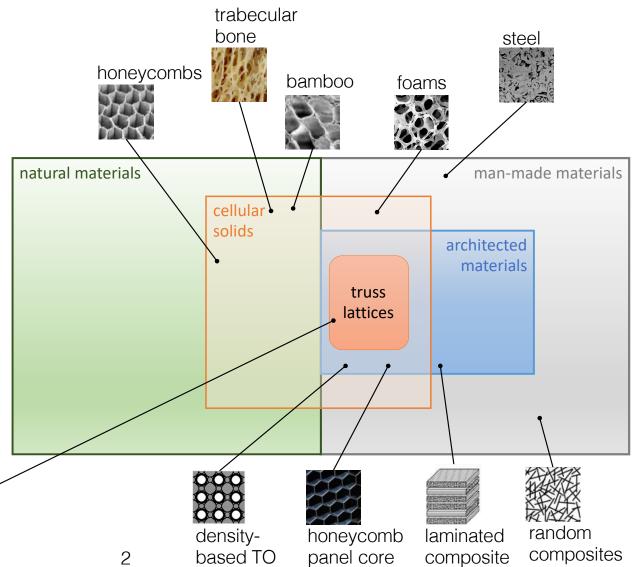
Department of Mechanical Engineering, University of Connecticut

June 2nd, 2020

Truss lattices

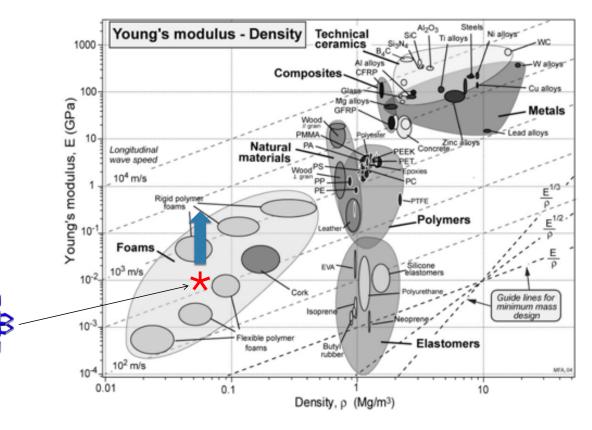
- Open cell
 - Manufacturability
 - Functional porosity
- Modeling with 1D elements
- High degree of redundancy





Multi-material lattices

- Materials with different modulus-to-density ratios → better stiffness for same weight –or– lighter for same stiffness
- One strut / one material → easier to manufacture
- Potential for multifunctionality



Graphical summary

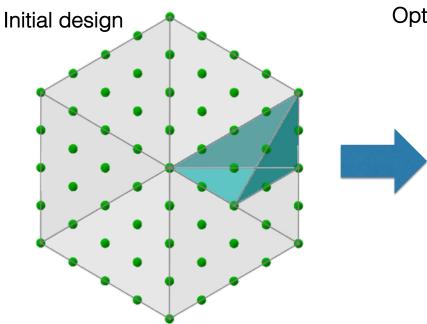
$$\gamma_1 = 0.55$$

$E_2 = 5.0$

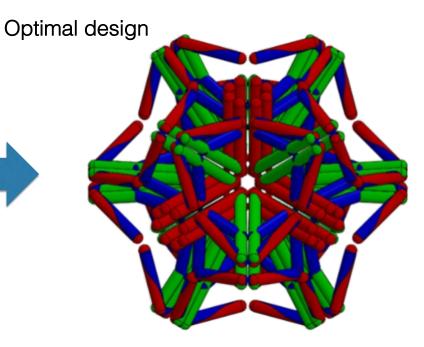
$$\gamma_2 = 0.45$$

$$E_3 = 4.5$$

 $\gamma_3 = 0.35$

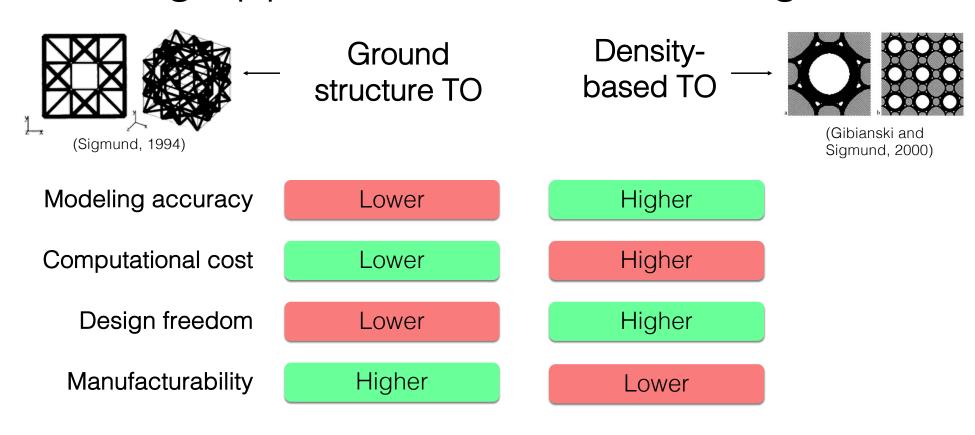


- all available materials
- Continuum mesh
- Specified material symmetries

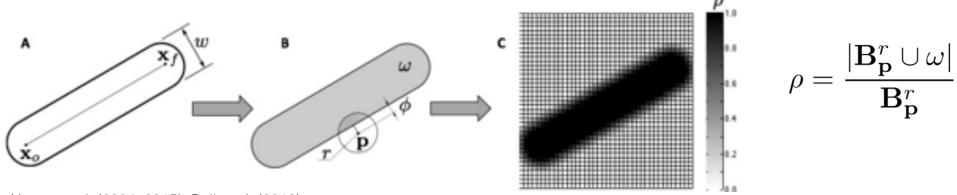


Spatial layout of struts (including removal) and choice of best material for each strut

Existing approaches to lattice design



Geometry projection: the idea



Norato et al. (2004, 2015), Bell et al. (2012)

$$\mathbb{C}(\mathbf{z}, \mathbf{p}) = \mathbb{C}_{void} + \sum_{i=1}^{N_m} (\mathbb{C}_i - \mathbb{C}_{void}) \, \rho_{eff}^i(\mathbf{z}, \mathbf{p})$$

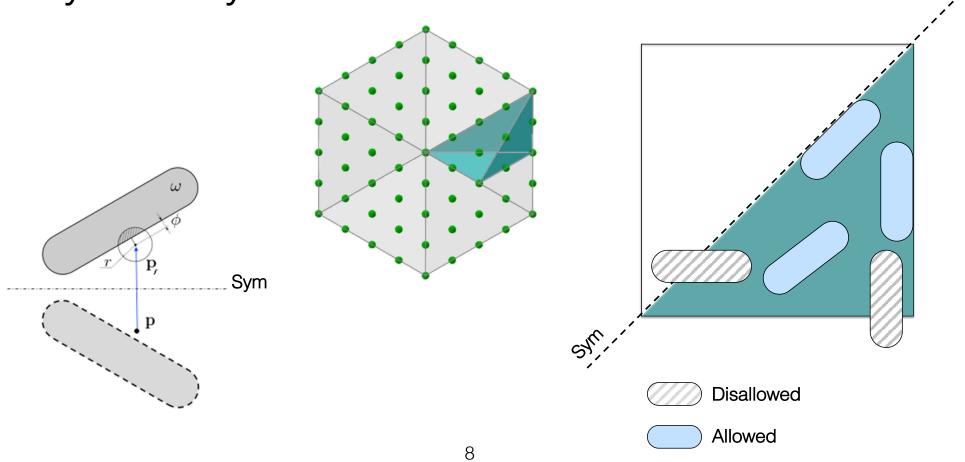
Ersatz material

Kazemi and Norato (2018)

Comparison

Ground Density-Geometry based TO **Projection** structure TO Higher Modeling accuracy Higher Lower Higher Higher Computational cost Lower Design freedom Higher Medium Lower Higher Higher Manufacturability Lower

Symmetry and No-cut constraint



Optimization problem

subject to

$$\mathsf{a}(\mathbf{u}^{(kl)}(\mathbf{z}),\mathbf{v}) = \mathsf{I}(\mathbf{v},\boldsymbol{\epsilon}^{0(kl)}), \forall \mathbf{v} \in \mathscr{U}_0,\mathbf{u}^{(kl)} \in \mathscr{U}$$

$$g_w(\mathbf{z}) \leq w_f^*$$

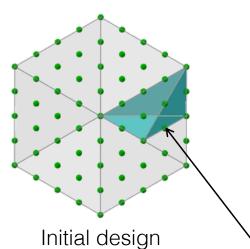
$$g_d(\mathbf{z}) \leq \varepsilon_d^{(I)}$$

$$g_m(\mathbf{z}) \leq \varepsilon_m^{(I)}$$

$$g_n(\mathbf{z}) \leq \varepsilon_n$$

$$\mathbf{x}_{b_0}, \mathbf{x}_{b_f} \in \Omega$$

$$0.0 \le \alpha_i^b \le 1.0$$
,



Bulk modulus

$$f(\mathbf{z}) \equiv -K(\mathbf{z})$$

$$K(\mathbf{z}) := \frac{1}{3}C_{1111} + \frac{2}{3}C_{1122}$$

Poisson's ratio

$$f(\mathbf{z}) \equiv \nu(\mathbf{z})$$

$$\nu(\mathbf{z}) = \frac{C_{1122}}{2(C_{1122} + C_{2121})}$$

 $E_1 = 10$

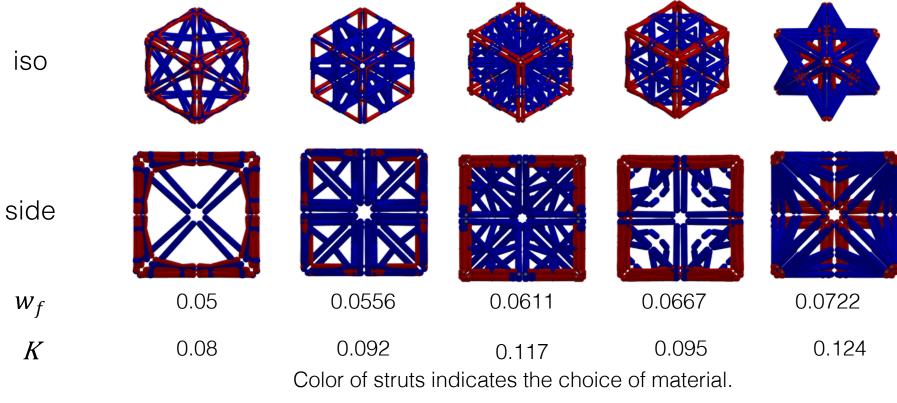
 $\gamma_1 = 10$

 $E_2 = 7.5$ $\gamma_2 = 0.675$ $E_3 = 5$

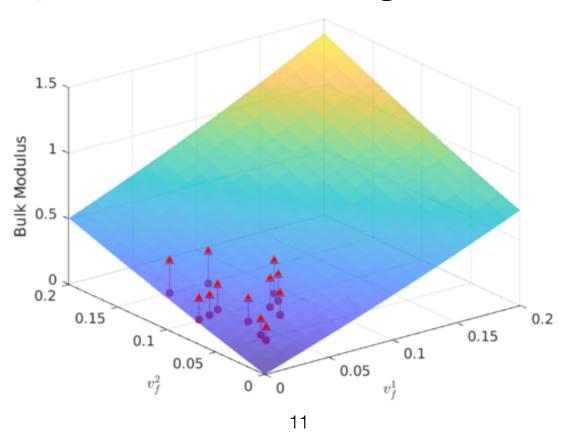
 $\gamma_3 = 0.45$

Cubic symmetry

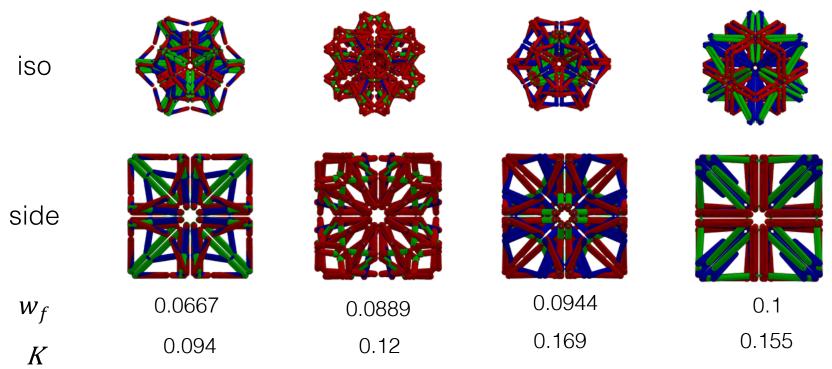
Bulk modulus maximization / 2 materials



Comparison to Hashin-Shtrikman-Walpole bounds (Gibianski and Sigmund, 2000)

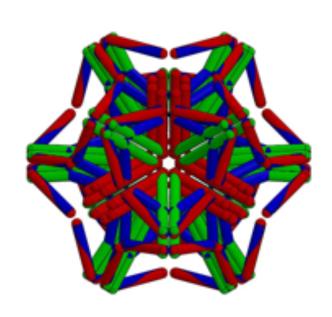


Bulk modulus maximization / 3 materials

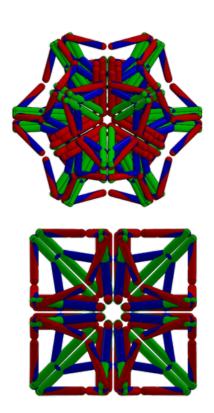


Color of struts indicates the choice of material.

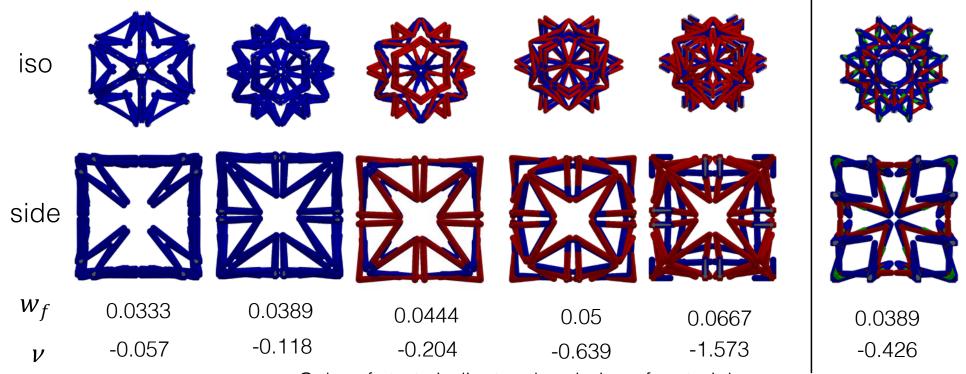
Bulk modulus maximization / 3 materials



Bulk modulus maximization design for $w_f = 0.0667$

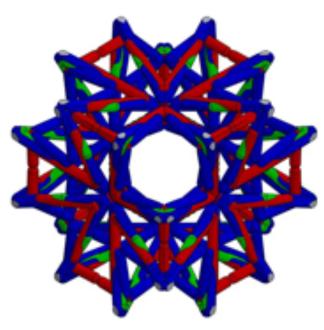


Poisson's ratio min. / 2 and 3 materials

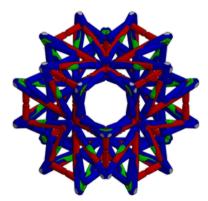


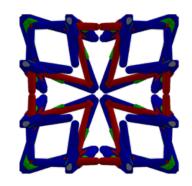
Color of struts indicates the choice of material.

Poisson's ratio min. / 3 materials



Poisson's ratio minimization design for $w_f = 0.0389$





Epilogue

- In practice, polymeric materials for multi-material printers have similar physical densities → optimizer uses only stiffer material.
- Possibility 1: impose minimum angle constraints to prevent overlaps among struts that make manufacturing more difficult.
- Possibility 2: struts that are hollow or fiber-reinforced (work in progress)

Thank you!

