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Multi-material lattices
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Graphical summary
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Existing approaches to lattice design
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Geometry projection: the idea

) ~|IBp Uw|

Norato et al. (2004, 2015), Bell et al. (2012)
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Comparison
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Symmetry and No-cut constraint
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Optimization problem

Bulk modulus f(z) =

g 1 2
subject to K(z) = §C1111 + §C1122
a(u(2),v) = I(v."™), v e %0 e % Poisson’s ratio f(z)
gw(z) <wj v(z) = C1122
ga(z) <& 2(Cr122 + Ca121)
gm(z) < &
s I e
Xpy: Xp, € Q E, =10 E,=75
0.0< o) < 1.0, Y1 =0.9 Y2 = 0.675

Initial design Cubic symmetry
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Bulk modulus maximization / 2 materials

L N>

IR

2N
- |’ 2,

0.05 . 0.0611 0.0667

0.08 0.092 0117 0.095 0.124
Color of struts indicates the choice of material.
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Comparison to Hashin-Shtrikman-Walpole
bounds (Gibianski and Sigmund, 2000)

Bulk Modulus




Bulk modulus maximization / 3 materials

0.169 0.155
K 0.094 0.12

Color of struts indicates the choice of material.
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Bulk modulus maximization / 3 materials

Bulk modulus maximization design
for wy = 0.0667

13



Poisson’s ratio min. / 2 and 3 materials
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Poisson’s ratio min. / 3 materials

Poisson’s ratio minimization
design for wy = 0.0389
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Epilogue

e In practice, polymeric materials for multi-material
printers have similar physical densities = optimizer
uses only stiffer material.

e Possibility 1: impose minimum angle constraints to
prevent overlaps among struts that make manufacturing
more difficult.

« Possibility 2: struts that are hollow or fiber-reinforced
(work in progress)
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